Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1991 Dec:40 Suppl 2:89-93.
doi: 10.2337/diab.40.2.s89.

Functional maturation and proliferation of fetal pancreatic beta-cells

Affiliations
Review

Functional maturation and proliferation of fetal pancreatic beta-cells

C Hellerström et al. Diabetes. 1991 Dec.

Abstract

We review some key aspects of the maturation of stimulus-secretion coupling and the regulation of DNA replication in the fetal beta-cell. During fetal life, the beta-cell shows a poor insulin response to glucose, although it responds to several other nonnutrient stimuli. However, chronic exposure to glucose in excess of basal levels can induce maturation of the stimulus-secretion coupling. Studies of glucose metabolism and the transmembrane flow of K+ and Ca2+ indicate that the attenuated glucose-stimulated insulin release is due to an immature glucose metabolism resulting in impaired regulation of ATP-sensitive K+ channels in the plasma membrane of the fetal beta-cell. In late fetal life, glucose is also a strong stimulus to beta-cell replication, and metabolism of glucose is a prerequisite for this process. Glucose stimulates proliferation by recruiting beta-cells from a resting state into a proliferative compartment composed of cells in an active cell cycle. The proliferative compartment comprises less than 10% of the total islet cell population even at maximal stimulation. The proliferation of fetal beta-cells is also regulated by several peptide growth factors such as growth hormone, insulinlike growth factor I, and platelet-derived growth factor. The observation that glucose can both induce precocious maturation of the stimulus-secretion coupling and stimulate proliferation of the fetal beta-cell explains the intrauterine hyperinsulinemia and beta-cell hyperplasia of the offspring of diabetic mothers with relatively mild hyperglycemia. However, severe hyperglycemia, at least when induced in rats, seems to retard rather than stimulate beta-cell growth.

PubMed Disclaimer

Publication types

LinkOut - more resources