Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul;92(4):641-6.
doi: 10.1113/expphysiol.2006.036368. Epub 2007 May 4.

Neurovascular coupling in the mammalian brain

Affiliations
Free article

Neurovascular coupling in the mammalian brain

Jessica A Filosa et al. Exp Physiol. 2007 Jul.
Free article

Abstract

Normal brain function requires proper supply of oxygen and glucose in a timely and local manner. This is achieved through an orchestrated intercellular communication between neurones, astrocytes and microvessels that results in a rapid and restricted increase in cerebral blood flow, a process known as neurovascular coupling. Astrocytic end-feet make close contacts with neuronal synapses and blood vessels and, given their ability to release vasoactive signals following neuronal activation, have been recognized as key intermediaries in the neurovascular response. Both dilating and constricting signals appear to be released from astrocytes upon increases in intracellular Ca(2+) concentration, and both dilatation and constriction of brain vessels have been observed in previous studies. In this article, we discuss the various astrocyte-derived vasodilating and vasoconstricting signals, their interactions and effects on astrocytes and vascular smooth muscle cells, and suggest the importance of the intrinsic properties of the latter cell type on the overall neurovascular response. We present a working model in which the rise in astrocytic Ca(2+) following neuronal activation leads not only to the rapid activation of calcium-activated K(+) channels in astrocytic end-feet, but also to their modulation by metabolites of the arachidonic acid pathway, which in general have been proposed to act on vascular smooth muscle cells rather than on astrocytes. We propose that this latter mechanism may in turn modulate K(+) signalling from astrocytes to smooth muscle cells, influencing the overall effects of the vasodilating and vasoconstricting signals released during neuronal activation.

PubMed Disclaimer

Publication types

LinkOut - more resources