Telomere-associated endonuclease-deficient Penelope-like retroelements in diverse eukaryotes
- PMID: 17483479
- PMCID: PMC1890498
- DOI: 10.1073/pnas.0702741104
Telomere-associated endonuclease-deficient Penelope-like retroelements in diverse eukaryotes
Abstract
The evolutionary origin of telomerases, enzymes that maintain the ends of linear chromosomes in most eukaryotes, is a subject of debate. Penelope-like elements (PLEs) are a recently described class of eukaryotic retroelements characterized by a GIY-YIG endonuclease domain and by a reverse transcriptase domain with similarity to telomerases and group II introns. Here we report that a subset of PLEs found in bdelloid rotifers, basidiomycete fungi, stramenopiles, and plants, representing four different eukaryotic kingdoms, lack the endonuclease domain and are located at telomeres. The 5' truncated ends of these elements are telomere-oriented and typically capped by species-specific telomeric repeats. Most of them also carry several shorter stretches of telomeric repeats at or near their 3' ends, which could facilitate utilization of the telomeric G-rich 3' overhangs to prime reverse transcription. Many of these telomere-associated PLEs occupy a basal phylogenetic position close to the point of divergence from the telomerase-PLE common ancestor and may descend from the missing link between early eukaryotic retroelements and present-day telomerases.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Comment in
-
The beginning of the end: links between ancient retroelements and modern telomerases.Proc Natl Acad Sci U S A. 2007 May 29;104(22):9107-8. doi: 10.1073/pnas.0703224104. Epub 2007 May 21. Proc Natl Acad Sci U S A. 2007. PMID: 17517612 Free PMC article. No abstract available.
Similar articles
-
Distribution and phylogeny of Penelope-like elements in eukaryotes.Syst Biol. 2006 Dec;55(6):875-85. doi: 10.1080/10635150601077683. Syst Biol. 2006. PMID: 17345670
-
Giant Reverse Transcriptase-Encoding Transposable Elements at Telomeres.Mol Biol Evol. 2017 Sep 1;34(9):2245-2257. doi: 10.1093/molbev/msx159. Mol Biol Evol. 2017. PMID: 28575409 Free PMC article.
-
An Ancient Clade of Penelope-Like Retroelements with Permuted Domains Is Present in the Green Lineage and Protists, and Dominates Many Invertebrate Genomes.Mol Biol Evol. 2021 Oct 27;38(11):5005-5020. doi: 10.1093/molbev/msab225. Mol Biol Evol. 2021. PMID: 34320655 Free PMC article.
-
Penelope-like elements--a new class of retroelements: distribution, function and possible evolutionary significance.Cytogenet Genome Res. 2005;110(1-4):510-21. doi: 10.1159/000084984. Cytogenet Genome Res. 2005. PMID: 16093704 Review.
-
Transposon control mechanisms in telomere biology.Curr Opin Genet Dev. 2018 Apr;49:56-62. doi: 10.1016/j.gde.2018.03.002. Epub 2018 Mar 20. Curr Opin Genet Dev. 2018. PMID: 29571043 Review.
Cited by
-
Telomerase and retrotransposons: reverse transcriptases that shaped genomes.Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20304-10. doi: 10.1073/pnas.1100269109. Proc Natl Acad Sci U S A. 2011. PMID: 22187457 Free PMC article. No abstract available.
-
Constitutive Heterochromatin in Eukaryotic Genomes: A Mine of Transposable Elements.Cells. 2022 Feb 22;11(5):761. doi: 10.3390/cells11050761. Cells. 2022. PMID: 35269383 Free PMC article. Review.
-
Transcriptome Analysis of ESTs from a Chaetognath Reveals a Deep-Branching Clade of Retrovirus-Like Retrotransposons.Open Virol J. 2008;2:44-60. doi: 10.2174/1874357900802010044. Epub 2008 May 7. Open Virol J. 2008. PMID: 19440464 Free PMC article.
-
The take and give between retrotransposable elements and their hosts.Annu Rev Genet. 2008;42:587-617. doi: 10.1146/annurev.genet.42.110807.091549. Annu Rev Genet. 2008. PMID: 18680436 Free PMC article. Review.
-
The impact of retrotransposons on human genome evolution.Nat Rev Genet. 2009 Oct;10(10):691-703. doi: 10.1038/nrg2640. Nat Rev Genet. 2009. PMID: 19763152 Free PMC article. Review.
References
-
- Blackburn EH. Nat Struct Biol. 2000;7:847–850. - PubMed
-
- Eickbush TH. Science. 1997;277:911–912. - PubMed
-
- Nakamura TM, Cech TR. Cell. 1998;92:587–590. - PubMed
-
- Arkhipova IR, Pyatkov KI, Meselson M, Evgen'ev MB. Nat Genet. 2003;33:123–124. - PubMed
-
- Kazazian HH., Jr Science. 2004;303:1626–1632. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases