Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug 10;282(32):23015-24.
doi: 10.1074/jbc.M701828200. Epub 2007 May 4.

Improved stability of the Jun-Fos Activator Protein-1 coiled coil motif: A stopped-flow circular dichroism kinetic analysis

Affiliations
Free article

Improved stability of the Jun-Fos Activator Protein-1 coiled coil motif: A stopped-flow circular dichroism kinetic analysis

Jody M Mason et al. J Biol Chem. .
Free article

Abstract

Two c-Jun leucine zipper variants that bind with high affinity to c-Fos have been selected using semirational design combined with protein-fragment complementation assays (JunW) or phage display selection (JunW(Ph1)). Enriched winners differ from each other in only two of ten semi-randomized positions, with DeltaT(m) values of 28 degrees C and 37 degrees C over wild-type. cFos-JunW, cFos-JunW(Ph1), and two intermediate mutants (cFos-JunW(Q21R) and cFos-JunW(E23K)) display biphasic kinetics in the folding direction, indicating the existence of a folding intermediate. The first reaction phase is fast and concentration-dependent, showing that the intermediate is readily populated and dimeric. The second phase is independent of concentration and is exponential. In contrast, in the unfolding direction, all molecules display two-state kinetics. Collectively this implies a transition state between unfolded helices and dimeric intermediate that is readily traversed in both directions. We demonstrate that the added stability of cFos-JunW(Ph1) relative to cFos-JunW is achieved via a combination of kinetic rate changes; cFos-JunW(E23K) has an increased initial dimerization rate, prior to the major transition state barrier while cFos-JunW(Q21R) displays a decreased unfolding rate. The former implies that improved hydrophobic burial and helix-stabilizing mutations exert their effect on the initial, rapid, monomer-collision event. In contrast, electrostatic interactions exert their effect late in the folding pathway. Although our focus is the leucine zipper region of the oncogenic transcription factor Activator Protein-1, coiled coils are ubiquitous and highly specific in their recognition of partners. Consequently, generating kinetic-based rules to predict and engineer their stability is of major significance in peptide-based drug design and nano-biotechnology.

PubMed Disclaimer

Publication types

LinkOut - more resources