Reversible acetylation of non histone proteins: role in cellular function and disease
- PMID: 17484129
Reversible acetylation of non histone proteins: role in cellular function and disease
Abstract
Post-translational modifications of nonhistone proteins play a significant role in regulating the chromatin structure, dynamics and thereby gene regulation. Among the different posttranslational modifications, reversible acetylation of non-histone proteins has profound functional implications on wide range of cellular processes. The acetylation status of these proteins is regulated by several cellular and non-cellular factors like viruses, physiological stresses, DNA damaging agents and ROS. Mutations found in the acetylation sites of these proteins and aberrant acetylation are related to imbalances in different cellular pathways and various diseases. Several factor acetyltransferases and deacetylases are known to regulate the acetylation of the nonhistone proteins. Modulators of these enzymes derived from natural as well as synthetic sources can thus have important therapeutic implications. Designing strategies to specifically target the acetylation of these proteins can be used as a valuable tool for new generation drugs