Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May 7:3:7.
doi: 10.1186/1746-6148-3-7.

Expression stability of commonly used reference genes in canine articular connective tissues

Affiliations

Expression stability of commonly used reference genes in canine articular connective tissues

Duncan Ayers et al. BMC Vet Res. .

Abstract

Background: The quantification of gene expression in tissue samples requires the use of reference genes to normalise transcript numbers between different samples. Reference gene stability may vary between different tissues, and between the same tissue in different disease states. We evaluated the stability of 9 reference genes commonly used in human gene expression studies. Real-time reverse transcription PCR and a mathematical algorithm were used to establish which reference genes were most stably expressed in normal and diseased canine articular tissues and two canine cell lines stimulated with lipolysaccaride (LPS).

Results: The optimal reference genes for comparing gene expression data between normal and diseased infrapatella fat pad were RPL13A and YWHAZ (M = 0.56). The ideal reference genes for comparing normal and osteoarthritic (OA) cartilage were RPL13A and SDHA (M = 0.57). The best reference genes for comparing normal and ruptured canine cranial cruciate ligament were B2M and TBP (M = 0.59). The best reference genes for normalising gene expression data from normal and LPS stimulated cell lines were SDHA and YWHAZ (K6) or SDHA and HMBS (DH82), which had expression stability (M) values of 0.05 (K6) and 0.07 (DH82) respectively. The number of reference genes required to reduce pairwise variation (V) to <0.20 was 4 for cell lines, 5 for cartilage, 7 for cranial cruciate ligament and 8 for fat tissue. Reference gene stability was not related to the level of gene expression.

Conclusion: The reference genes demonstrating the most stable expression within each different canine articular tissue were identified, but no single reference gene was identified as having stable expression in all different tissue types. This study underlines the necessity to select reference genes on the basis of tissue and disease specific expression profile evaluation and highlights the requirement for the identification of new reference genes with greater expression stability for use in canine articular tissue gene expression studies.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Mean expression values (± Standard Deviation [SD]) of canine cell lines (DH82, K6) before and after lipopolysaccharide stimulation (DH82L, K6L), following RT-PCR analysis.
Figure 2
Figure 2
Mean expression values for candidate reference genes (± SD) from healthy and diseased canine infrapatellar fat tissue, canine cartilage and ligament tissue, following RT-PCR analysis.
Figure 3
Figure 3
Pairwise variation analysis for determining optimal number of reference genes in various canine tissues (healthy and diseased).
Figure 4
Figure 4
Microfluidic capillary electrophoresis of the sequence reactions identified single bands which corresponded exactly to the expected product size.

Similar articles

Cited by

References

    1. Aigner T, Zien A, Gehrsitz A, Gebhard PM, McKenna L. Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using complementary DNA-array technology. Arthritis Rheum. 2001;44:2777–2789. doi: 10.1002/1529-0131(200112)44:12<2777::AID-ART465>3.0.CO;2-H. - DOI - PubMed
    1. Valdes AM, Hart DJ, Jones KA, Surdulescu G, Swarbrick P, Doyle DV, Schafer AJ, Spector TD. Association study of candidate genes for the prevalence and progression of knee osteoarthritis. Arthritis Rheum. 2004;50:2497–2507. doi: 10.1002/art.20443. - DOI - PubMed
    1. Toh Y, Oki E, Oda S, Tokunaga E, Ohno S, Maehara Y, Nicolson GL, Sugimachi K. Overexpression of the MTA1 gene in gastrointestinal carcinomas: correlation with invasion and metastasis. Int J Cancer. 1997;74:459–463. doi: 10.1002/(SICI)1097-0215(19970822)74:4<459::AID-IJC18>3.0.CO;2-4. - DOI - PubMed
    1. Campbell SE, Bennett D, Nasir L, Gault EA, Argyle DJ. Disease- and cell-type-specific transcriptional targeting of vectors for osteoarthritis gene therapy: further development of a clinical canine model. Rheumatology (Oxford) 2005;44:735–743. doi: 10.1016/S0378-1119(01)00573-X. - DOI - PubMed
    1. Bustin SA, Nolan T. Pitfalls of Quantitative Real-Time Reverse-Transcription Polymerase Chain Reaction. J Biomol Tech. 2004;15:155–166. - PMC - PubMed