Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May;132(5):1852-65.
doi: 10.1053/j.gastro.2007.02.049. Epub 2007 Feb 23.

The mechanism and spread of pacemaker activity through myenteric interstitial cells of Cajal in human small intestine

Affiliations

The mechanism and spread of pacemaker activity through myenteric interstitial cells of Cajal in human small intestine

Hyun-Tai Lee et al. Gastroenterology. 2007 May.

Abstract

Background & aims: It has been generally assumed that interstitial cells of Cajal (ICC) in the human gastrointestinal tract have similar functions to those in rodents, but no direct experimental evidence exists to date for this assumption. This is an important question because pathologists have noted decreased numbers of ICC in patients with a variety of motility disorders, and some have speculated that loss of ICC could be responsible for motor dysfunction. Our aims were to determine whether myenteric ICC (ICC-MY) in human jejunum are pacemaker cells and whether these cells actively propagate pacemaker activity.

Methods: The mucosa and submucosa were removed, and strips of longitudinal muscle were peeled away to reveal the ICC-MY network. ICC networks were loaded with the Ca(2+) indicator fluo-4, and pacemaker activity was recorded via high-speed video imaging at 36.5 degrees C +/- 0.5 degrees C.

Results: Rhythmic, biphasic Ca(2+) transients (6.03 +/- 0.33 cycles/min) occurred in Kit-positive ICC-MY. These consisted of a rapidly propagating upstroke phase that initiated a sustained plateau phase, which was associated with Ca(2+) spikes in neighboring smooth muscle. Pacemaker activity was dependent on inositol 1,4,5-triphosphate receptor-operated stores and mitochondrial function. The upstroke phase of Ca(2+) transients in ICC-MY appeared to result from Ca(2+) influx through dihydropyridine-resistant Ca(2+) channels, whereas the plateau phase was attributed to Ca(2+) release from inositol 1,4,5-triphosphate receptor-operated Ca(2+) stores.

Conclusions: Each ICC-MY in human jejunum generates spontaneous pacemaker activity that actively propagates through the ICC network. Loss of these cells could severely disrupt the normal function of the human small intestine.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources