Signaling and transcriptional regulation in osteoblast commitment and differentiation
- PMID: 17485283
- PMCID: PMC3571113
- DOI: 10.2741/2296
Signaling and transcriptional regulation in osteoblast commitment and differentiation
Abstract
The major event that triggers osteogenesis is the transition of mesenchymal stem cells into bone forming, differentiating osteoblast cells. Osteoblast differentiation is the primary component of bone formation, exemplified by the synthesis, deposition and mineralization of extracellular matrix. Although not well understood, osteoblast differentiation from mesenchymal stem cells is a well-orchestrated process. Recent advances in molecular and genetic studies using gene targeting in mouse enable a better understanding of the multiple factors and signaling networks that control the differentiation process at a molecular level. Osteoblast commitment and differentiation are controlled by complex activities involving signal transduction and transcriptional regulation of gene expression. We review Wnt signaling pathway and Runx2 regulation network, which are critical for osteoblast differentiation. Many other factors and signaling pathways have been implicated in regulation of osteoblast differentiation in a network manner, such as the factors Osterix, ATF4, and SATB2 and the TGF-beta, Hedgehog, FGF, ephrin, and sympathetic signaling pathways. This review summarizes the recent advances in the studies of signaling transduction pathways and transcriptional regulation of osteoblast cell lineage commitment and differentiation. The knowledge of osteoblast commitment and differentiation should be applied towards the development of new diagnostic and therapeutic alternatives for human bone diseases.
Figures
References
-
- Stokstad E. Bone quality fills holes in fracture risk. Science. 2005;308:1580. - PubMed
-
- Jackson ME, Shalhoub V, Lian JB, Stein GS, Marks SC., Jr. Aberrant gene expression in cultured mammalian bone cells demonstrates an osteoblast defect in osteopetrosis. J Cell Biochem. 1994;55:366–72. - PubMed
-
- Shalhoub V, Bettencourt B, Jackson ME, MacKay CA, Glimcher MJ, Marks SC, Jr., Stein GS, Lian JB. Abnormalities of phosphoprotein gene expression in three osteopetrotic rat mutations: elevated mRNA transcripts, protein synthesis, and accumulation in bone of mutant animals. J Cell Physiol. 1994;158:110–20. - PubMed
-
- Shalhoub V, Jackson ME, Lian JB, Stein GS, Marks SC., Jr. Gene expression during skeletal development in three osteopetrotic rat mutations. Evidence for osteoblast abnormalities. J Biol Chem. 1991;266:9847–56. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources