A quantitative cytochemical investigation of osteoclasts and multinucleate giant cells
- PMID: 1748563
- DOI: 10.1007/BF01046589
A quantitative cytochemical investigation of osteoclasts and multinucleate giant cells
Abstract
Quantitative cytochemical, immunocytochemical, autoradiographic and electron cytochemical investigations have been used to compare osteoclasts with multinucleate giant cells that had been freshly obtained from the same animal. The levels of beta-acid galactosidase activity, the DNA in individual nuclei and the cellular protein content were similar in both cell types. However, osteoclasts generally possessed greater acid phosphatase and NADH dehydrogenase activity but lower levels of fluoride-inhibited non-specific esterase activity than multinucleate giant cells. The acid phosphatase activity in multinucleate giant cells was completely inhibited by 100 mM tartrate, but in osteoclasts only a 20% reduction in activity was observed. Formation of multinucleate giant cells in a "bone microenvironment" (thin bone slices) did not increase their content of tartrate-resistant acid phosphatase activity. Moreover, in osteoclasts, endogenous peroxidase activity was undetectable but present in several granules within the cytoplasm of multinucleate giant cells. Osteoclasts and multinucleate giant cells displayed a similar microtubules distribution, but calcitonin, which induced rearrangement of microtubules and cellular contraction in osteoclasts, had no effect on multinucleate giant cells. Thus, these investigations reveal both similarities and differences between these two syncytia and support the hypothesis that osteoclasts and multinucleate giant cells are related. Possibly osteoclasts arise from monocyte progenitors before commitment to a macrophage lineage has occurred.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources