Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Dec 15;266(35):23761-8.

Differential regulation of protein kinase C isozymes by thyrotropin-releasing hormone in GH4C1 cells

Affiliations
  • PMID: 1748652
Free article

Differential regulation of protein kinase C isozymes by thyrotropin-releasing hormone in GH4C1 cells

S C Kiley et al. J Biol Chem. .
Free article

Abstract

GH4C1 cells, which express Ca(2+)-dependent alpha- and beta- as well as Ca(2+)-independent gamma-, epsilon- and zeta-protein kinase C (PKC) isozymes, provide a cell culture model for studying isozyme-specific properties and functions. Hormonal activation of PKCs regulates the differentiated functions of these cells, namely secretion and synthesis of prolactin (PRL). We previously reported that thyrotropin-releasing hormone (TRH) selectively down-modulates epsilon-PKC with no effect on alpha- or beta-PKCs (Kiley, S.C., Schaap, D., Parker, P., Hsieh, L.-L., and Jaken, S. (1990) J. Biol. Chem. 265, 15704-15712). We now extend those studies to explore the relationship between TRH-stimulated diacylglycerol (DAG) levels and epsilon-PKC down-modulation. TRH stimulates three distinct DAG phases in GH cells. Phase 1 DAG peaks at 15 s, is accompanied by a 6-fold increase in intracellular Ca2+, and causes the redistribution of alpha-, beta-, delta, and epsilon-PKC isozymes from a soluble to a detergent-insoluble particulate compartment. Phase 2 DAG peaks at 10 min, is not associated with a Ca2+ signal, and does not activate PKC by any criteria tested. Phase 3 DAG peaks at 6 h and is sustained through 12 h. This novel DAG phase is not associated with increased intracellular Ca2+. The time course of phase 3 DAG formation corresponds to the time course of TRH-stimulated epsilon-PKC down-regulation; maximal effects are observed at 6-12 h for both events. Unlike alpha-, beta-, and delta-PKCs which are preferentially distributed in the soluble fraction of resting GH cells, epsilon-PKC is also distributed in the detergent-insoluble particulate fraction. The selective compartmentalization of epsilon-PKC in the particulate fraction may render this pool uniquely susceptible to proteolytic degradation. The time course of phase 3 DAG formation and epsilon-PKC down-modulation corresponds to the time course of decreasing PRL message synthesis in GH4 cells. The data suggests that loss of epsilon-PKC may be associated with the down-regulation of prolactin synthesis and that regulation of PRL gene transcription may be an epsilon-PKC-specific function in GH cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources