Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2007 Sep;191(1):67-75.
doi: 10.1111/j.1748-1716.2007.01712.x. Epub 2007 May 3.

Changes in signalling pathways regulating protein synthesis in human muscle in the recovery period after endurance exercise

Affiliations
Clinical Trial

Changes in signalling pathways regulating protein synthesis in human muscle in the recovery period after endurance exercise

H Mascher et al. Acta Physiol (Oxf). 2007 Sep.

Abstract

Aim: Exercise induced alterations in the rate of muscle protein synthesis may be related to activity changes in signalling pathways involved in protein synthesis. The aim of the present study was to investigate whether such changes in enzyme phosphorylation occur after endurance exercise.

Methods: Six male subjects performed ergometer cycling exercise for 1 h at 75% of the maximal oxygen uptake. Muscle biopsy samples from the vastus lateralis were taken before, immediately after, 30 min, 1 h, 2 h and 3 h after exercise for the determination of protein kinase B (PKB/Akt), mammalian target of rapamycin (mTOR), glycogen synthase 3 kinase (GSK-3), p70S6 kinase (p70(S6k)) and eukaryotic elongation factor 2 (eEF2) phosphorylation.

Results: The phosphorylation of Akt was unchanged directly after exercise, but two- to fourfold increased 1 and 2 h after the exercise, whereas GSK-3alpha and beta phosphorylation were two- to fourfold elevated throughout most of the 3-h recovery period. Phosphorylation of mTOR was elevated threefold directly after, 30 min and 2 h after exercise and eEF2 phosphorylation was decreased by 35-75% from 30 min to 3 h-recovery. Exercise led to a five- to eightfold increase in Ser(424)/Thr(421) phosphorylation of p70(S6k) up to 30 min after exercise, but no change in Thr(389) phosphorylation.

Conclusions: The marked decrease in eEF2 phosphorylation suggests an activation of translation elongation and possibly protein synthesis in the recovery period after sustained endurance exercise. The lack of p70(S6k) activation suggests that translation initiation is activated via alternative pathways, possibly via the activation of eukaryotic initiating factor 2B.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources