Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 May;5(5):331-44.
doi: 10.1016/j.cmet.2007.03.009.

Molecular pathogenesis of pseudohypoaldosteronism type II: generation and analysis of a Wnk4(D561A/+) knockin mouse model

Affiliations
Free article
Comparative Study

Molecular pathogenesis of pseudohypoaldosteronism type II: generation and analysis of a Wnk4(D561A/+) knockin mouse model

Sung-Sen Yang et al. Cell Metab. 2007 May.
Free article

Abstract

WNK1 and WNK4 mutations have been reported to cause pseudohypoaldosteronism type II (PHAII), an autosomal-dominant disorder characterized by hyperkalemia and hypertension. To elucidate the molecular pathophysiology of PHAII, we generated Wnk4(D561A/+) knockin mice presenting the phenotypes of PHAII. The knockin mice showed increased apical expression of phosphorylated Na-Cl cotransporter (NCC) in the distal convoluted tubules. Increased phosphorylation of the kinases OSR1 and SPAK was also observed in the knockin mice. Apical localization of the ROMK potassium channel and transepithelial Cl(-) permeability in the cortical collecting ducts were not affected in the knockin mice, whereas activity of epithelial Na(+) channels (ENaC) was increased. This increase, however, was not evident after hydrochlorothiazide treatment, suggesting that the regulation of ENaC was not a genetic but a secondary effect. Thus, the pathogenesis of PHAII caused by a missense mutation of WNK4 was identified to be increased function of NCC through activation of the OSR1/SPAK-NCC phosphorylation cascade.

PubMed Disclaimer

Publication types

MeSH terms

Substances