Classification-driven watershed segmentation
- PMID: 17491471
- DOI: 10.1109/tip.2007.894239
Classification-driven watershed segmentation
Abstract
This paper presents a novel approach for creation of topographical function and object markers used within watershed segmentation. Typically, marker-driven watershed segmentation extracts seeds indicating the presence of objects or background at specific image locations. The marker locations are then set to be regional minima within the topological surface (typically, the gradient of the original input image), and the watershed algorithm is applied. In contrast, our approach uses two classifiers, one trained to produce markers, the other trained to produce object boundaries. As a result of using machine-learned pixel classification, the proposed algorithm is directly applicable to both single channel and multichannel image data. Additionally, rather than flooding the gradient image, we use the inverted probability map produced by the second aforementioned classifier as input to the watershed algorithm. Experimental results demonstrate the superior performance of the classification-driven watershed segmentation algorithm for the tasks of 1) image-based granulometry and 2) remote sensing.
Similar articles
-
Skin segmentation using color pixel classification: analysis and comparison.IEEE Trans Pattern Anal Mach Intell. 2005 Jan;27(1):148-54. doi: 10.1109/TPAMI.2005.17. IEEE Trans Pattern Anal Mach Intell. 2005. PMID: 15628277
-
A downstream algorithm based on extended gradient vector flow field for object segmentation.IEEE Trans Image Process. 2004 Oct;13(10):1379-92. doi: 10.1109/tip.2004.834663. IEEE Trans Image Process. 2004. PMID: 15462147
-
Combined morphological-spectral unsupervised image segmentation.IEEE Trans Image Process. 2005 Jan;14(1):49-62. doi: 10.1109/tip.2004.838695. IEEE Trans Image Process. 2005. PMID: 15646872
-
An overview and performance evaluation of classification-based least squares trained filters.IEEE Trans Image Process. 2008 Oct;17(10):1772-82. doi: 10.1109/TIP.2008.2002162. IEEE Trans Image Process. 2008. PMID: 18784026 Review.
-
[Neuroimaging in psychiatry: multivariate analysis techniques for diagnosis and prognosis].Nervenarzt. 2014 Jun;85(6):714-9. doi: 10.1007/s00115-014-4022-x. Nervenarzt. 2014. PMID: 24849118 Review. German.
Cited by
-
A comprehensive review of image analysis methods for microorganism counting: from classical image processing to deep learning approaches.Artif Intell Rev. 2022;55(4):2875-2944. doi: 10.1007/s10462-021-10082-4. Epub 2021 Sep 29. Artif Intell Rev. 2022. PMID: 34602697 Free PMC article.
-
EMDS-6: Environmental Microorganism Image Dataset Sixth Version for Image Denoising, Segmentation, Feature Extraction, Classification, and Detection Method Evaluation.Front Microbiol. 2022 Apr 25;13:829027. doi: 10.3389/fmicb.2022.829027. eCollection 2022. Front Microbiol. 2022. PMID: 35547119 Free PMC article.
-
ECM-CSD: An Efficient Classification Model for Cancer Stage Diagnosis in CT Lung Images Using FCM and SVM Techniques.J Med Syst. 2019 Feb 12;43(3):73. doi: 10.1007/s10916-019-1190-z. J Med Syst. 2019. PMID: 30746555
-
On the potential of a new IVUS elasticity modulus imaging approach for detecting vulnerable atherosclerotic coronary plaques: in vitro vessel phantom study.Phys Med Biol. 2010 Oct 7;55(19):5701-21. doi: 10.1088/0031-9155/55/19/006. Epub 2010 Sep 8. Phys Med Biol. 2010. PMID: 20826899 Free PMC article.
-
Vulnerable atherosclerotic plaque elasticity reconstruction based on a segmentation-driven optimization procedure using strain measurements: theoretical framework.IEEE Trans Med Imaging. 2009 Jul;28(7):1126-37. doi: 10.1109/TMI.2009.2012852. Epub 2009 Jan 19. IEEE Trans Med Imaging. 2009. PMID: 19164080 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials