Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May;39(5):351-8.
doi: 10.1111/j.1745-7270.2007.00287.x.

Cloning and expression analysis of p26 gene in Artemia sinica

Affiliations
Free article

Cloning and expression analysis of p26 gene in Artemia sinica

Lijuan Jiang et al. Acta Biochim Biophys Sin (Shanghai). 2007 May.
Free article

Abstract

The protein p26 is a small heat shock protein that functions as a molecular chaperone to protect embryos by preventing irreversible protein damage during embryonic development. A 542 bp fragment of the p26 gene was cloned and sequenced. The fragment encoded 174 amino acid residues and the amino acid sequence contained the alpha-crystallin domain. Phylogenetic analysis showed that eight Artemia populations were divided into four major groups. Artemia sinica (YC) belonged to the East Asia bisexual group. Expression of the p26 gene at different developmental stages of A. sinica was quantified using real-time quantitative polymerase chain reaction followed by cloning and sequencing. The relationship between the quantity of p26 gene expression and embryonic development was analyzed. The results indicated that massive amounts of p26 were expressed during the development of A. sinica. At the developmental stage of 0 h, A. sinica expressed the highest level of p26. As development proceeded, expression levels of the p26 gene reduced significantly. There was a small quantity of p26 gene expression at the developmental stages of 16 h and 24 h. We concluded that p26 might be involved in protecting the embryo from physiological stress during embryonic development.

PubMed Disclaimer

Publication types

MeSH terms