Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec;74(12):1538-47.
doi: 10.1002/mrd.20755.

Expression of enhanced green fluorescent protein in porcine- and bovine-cloned embryos following interspecies somatic cell nuclear transfer of fibroblasts transfected by retrovirus vector

Affiliations

Expression of enhanced green fluorescent protein in porcine- and bovine-cloned embryos following interspecies somatic cell nuclear transfer of fibroblasts transfected by retrovirus vector

Sang Jun Uhm et al. Mol Reprod Dev. 2007 Dec.

Abstract

Interspecies somatic cell nuclear transfer (iSCNT) has emerged as an important tool for studying nucleo-cytoplasmic interactions and cloning of animals whose oocytes are difficult to obtain. This study was designed to explore the feasibility of employing transgenic fibroblasts as donor cells for iSCNT. The study examined the chromatin morphology, in vitro development, and expression of an enhanced green fluorescent protein (EGFP) gene in porcine- and bovine-cloned embryos produced by iSCNT of fetal fibroblast transfected with a pLNbeta-EGFP retroviral vector. Parthenogenetic and transfected or nontransfected intraspecies SCNT embryos were used as controls for comparison. Analysis of data revealed that xenogenic oocyte was able to reprogram somatic cells of different genus and supports their in vitro development to the blastocyst stage. However, the developmental rates of transgenic iSCNT embryos to the blastocyst stage were significantly lower than those of intraspecies SCNT embryos. The reduction in development rates was however, not due to integration of the transgene as the lower (P < 0.05) development rates of the intraspecies SCNT porcine or bovine embryos did not differ between transgenic and nontransgenic groups. Expression of EGFP was observed in 100% of blastocysts and mosaicism was not observed. Furthermore, after iSCNT of porcine or bovine donor nuclei into xenogenic ooplasm, patterns of nuclear remodeling in reconstructed embryos were similar. In conclusion, our data demonstrated the feasibility of producing transgenic iSCNT embryos. To our knowledge, this is the first report of transgenic cloned embryo production by iSCNT approach. In the future, this may provide a powerful research tool for studying developmental events in domestic animals and provide marked cell lines for other genetic manipulations.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources