Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul;85(9):1959-69.
doi: 10.1002/jnr.21320.

Delayed neurotrophin treatment following deafness rescues spiral ganglion cells from death and promotes regrowth of auditory nerve peripheral processes: effects of brain-derived neurotrophic factor and fibroblast growth factor

Affiliations
Free article

Delayed neurotrophin treatment following deafness rescues spiral ganglion cells from death and promotes regrowth of auditory nerve peripheral processes: effects of brain-derived neurotrophic factor and fibroblast growth factor

Josef M Miller et al. J Neurosci Res. 2007 Jul.
Free article

Abstract

The extent to which neurotrophic factors are able to not only rescue the auditory nerve from deafferentation-induced degeneration but also promote process regrowth is of basic and clinical interest, as regrowth may enhance the therapeutic efficacy of cochlear prostheses. The use of neurotrophic factors is also relevant to interventions to promote regrowth and repair at other sites of nerve trauma. Therefore, auditory nerve survival and peripheral process regrowth were assessed in the guinea pig cochlea following chronic infusion of BDNF + FGF(1) into scala tympani, with treatment initiated 4 days, 3 weeks, or 6 weeks after deafferentation from deafening. Survival of auditory nerve somata (spiral ganglion neurons) was assessed from midmodiolar sections. Peripheral process regrowth was assessed using pan-Trk immunostaining to selectively label afferent fibers. Significantly enhanced survival was seen in each of the treatment groups compared to controls receiving artificial perilymph. A large increase in peripheral processes was found with BDNF + FGF(1) treatment after a 3-week delay compared to the artificial perilymph controls and a smaller enhancement after a 6-week delay. Neurotrophic factor treatment therefore has the potential to improve the benefits of cochlear implants by maintaining a larger excitable population of neurons and inducing neural regrowth.

PubMed Disclaimer

Publication types

MeSH terms