Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul;24(7):561-74.
doi: 10.1002/yea.1493.

Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma

Affiliations

Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma

Jan H Swiegers et al. Yeast. 2007 Jul.

Abstract

Volatile thiols, such as 4-mercapto-4-methylpentan-2-one (4MMP), 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA), are among the most potent aroma compounds found in wine and can have a significant effect on wine quality and consumer preferences. At optimal concentrations in wine, these compounds impart flavours of passionfruit, grapefruit, gooseberry, blackcurrant, lychee, guava and box hedge. The enzymatic release of aromatic thiols from grape-derived, non-volatile cysteinylated precursors (Cys-4MMP and Cys-3MH) and the further modification thereof (conversion of 3MH into 3MHA) during fermentation, enhance the varietal characters of wines such as Sauvignon Blanc. Wine yeast strains have limited and varying capacities to produce aroma-enhancing thiols from their non-volatile counterparts in grape juice. Even under optimal fermentation conditions, the most efficient thiol-releasing Saccharomyces cerevisiae wine strain known realizes less than 5% of the thiol-related flavour potential of grape juice. The objective of this study was to develop a wine yeast able to unleash the untapped thiol aromas in grape juice during winemaking. To achieve this goal, the Escherichia coli tnaA gene, encoding a tryptophanase with strong cysteine-beta-lyase activity, was cloned and overexpressed in a commercial wine yeast strain under the control of the regulatory sequences of the yeast phosphoglycerate kinase I gene (PGK1). This modified strain expressing carbon-sulphur lyase activity released up to 25 times more 4MMP and 3MH in model ferments than the control host strain. Wines produced with the engineered strain displayed an intense passionfruit aroma. This yeast offers the potential to enhance the varietal aromas of wines to predetermined market specifications.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources