Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct;21(12):3142-52.
doi: 10.1096/fj.07-8377com. Epub 2007 May 10.

Characterization of cyclin L1 as an immobile component of the splicing factor compartment

Affiliations

Characterization of cyclin L1 as an immobile component of the splicing factor compartment

Andreas Herrmann et al. FASEB J. 2007 Oct.

Abstract

Cyclin L1 and cyclin L2 are two closely related members of the cyclin family that contain C-terminal arginine- and serine-rich (RS) domains and are localized in the splicing factor compartment (nuclear speckles). Here we applied photobleaching techniques to show that a green fluorescent protein (GFP) fusion protein of cyclin L1, in contrast to cyclin L2, was not mobile within the nucleus of living COS7 cells. The objectives of this study were to 1) characterize the intranuclear localization and mobility properties of cyclin L1 in different cellular states, and 2) dissect the structural elements required for immobilization of cyclin L1. Transcriptional arrest by actinomycin D caused accumulation of GFP-cyclin L2 in rounded and enlarged nuclear speckles but did not affect the subnuclear pattern of distribution of GFP-cyclin L1. Although immobile in most phases of the cell cycle, GFP-cyclin L1 was diffusely distributed and highly mobile in the cytoplasm of metaphase cells. By analysis of a series of chimeras, deletion constructs, and a point mutant, a segment within the RS domain of cyclin L1 was identified to be necessary for the immobility of the protein in nuclear speckles. This study provides the first characterization of an immobile component of nuclear speckles.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources