Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007:157:125-8.
doi: 10.1159/000102453.

Development of IgA nephropathy-like disease with high serum IgA levels and increased proportion of polymeric IgA in Beta-1,4-galactosyltransferase-deficient mice

Affiliations
Review

Development of IgA nephropathy-like disease with high serum IgA levels and increased proportion of polymeric IgA in Beta-1,4-galactosyltransferase-deficient mice

Toshikazu Nishie et al. Contrib Nephrol. 2007.

Abstract

The glycosylation of glycoproteins is important for their biological activity, conformation and stability. Recent studies indicate that aberrant glycosylation causes various human disorders. Here we report that mice lacking beta-1,4-galactosyltransferase-I (beta4GalT-I), which transfers galactose from UDP-Gal to terminal GlcNAc of N- and O-glycans in a beta-1,4- linkage, developed IgA nephropathy (IgAN)-like disease. Urinary albumin levels were significantly increased in the beta4GalT-I-deficient mice. Hematuria was detected in some of the beta4GalT-I-deficient mice, suggesting impaired renal function. Furthermore, histological and immunohistochemical examination showed expanded mesangial matrix, IgA deposition with mesangial pattern and electron-dense deposits in the paramesangial regions in the beta4GalT-Ideficient mice. These results demonstrate that the beta4GalT-I-deficient mice developed IgANlike disease. Furthermore, high serum IgA levels with increased polymeric forms were detected. In humans, serum IgA derived from patients with IgAN has aberrant beta3-galactosylation and sialylation on its O-linked glycans of the hinge region. Mouse IgA does not have O-glycans of the hinge region and has several N-glycans. As expected, beta4-galactosylation on the N-glycans of the serum IgA of the beta4GalT-I-deficient mice was completely absent. This is the first report demonstrating that genetic remodeling of protein glycosylation causes IgAN. We suggest that aberrant beta4-galactosylation of serum IgA participates in the Nishie/Miyaishi/Azuma/Kameyama/Naruse/Hashimoto/Yokoyama/Narimatsu/Wada/Asano 126 development of IgAN, including deposition of IgA, polymerization of IgA, and glomerular injury after IgA deposition.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources