A linear programming approach to max-sum problem: a review
- PMID: 17496375
- DOI: 10.1109/TPAMI.2007.1036
A linear programming approach to max-sum problem: a review
Abstract
The max-sum labeling problem, defined as maximizing a sum of binary (i.e., pairwise) functions of discrete variables, is a general NP-hard optimization problem with many applications, such as computing the MAP configuration of a Markov random field. We review a not widely known approach to the problem, developed by Ukrainian researchers Schlesinger et al. in 1976, and show how it contributes to recent results, most importantly, those on the convex combination of trees and tree-reweighted max-product. In particular, we review Schlesinger et al.'s upper bound on the max-sum criterion, its minimization by equivalent transformations, its relation to the constraint satisfaction problem, the fact that this minimization is dual to a linear programming relaxation of the original problem, and the three kinds of consistency necessary for optimality of the upper bound. We revisit problems with Boolean variables and supermodular problems. We describe two algorithms for decreasing the upper bound. We present an example application for structural image analysis.
Similar articles
-
Minimizing nonsubmodular functions with graph cuts - a review.IEEE Trans Pattern Anal Mach Intell. 2007 Jul;29(7):1274-9. doi: 10.1109/TPAMI.2007.1031. IEEE Trans Pattern Anal Mach Intell. 2007. PMID: 17496384 Review.
-
Convergent tree-reweighted message passing for energy minimization.IEEE Trans Pattern Anal Mach Intell. 2006 Oct;28(10):1568-83. doi: 10.1109/TPAMI.2006.200. IEEE Trans Pattern Anal Mach Intell. 2006. PMID: 16986540
-
Dense image registration through MRFs and efficient linear programming.Med Image Anal. 2008 Dec;12(6):731-41. doi: 10.1016/j.media.2008.03.006. Epub 2008 Apr 7. Med Image Anal. 2008. PMID: 18482858
-
A binary linear programming formulation of the graph edit distance.IEEE Trans Pattern Anal Mach Intell. 2006 Aug;28(8):1200-14. doi: 10.1109/TPAMI.2006.152. IEEE Trans Pattern Anal Mach Intell. 2006. PMID: 16886857
-
A review of geometric transformations for nonrigid body registration.IEEE Trans Med Imaging. 2008 Jan;27(1):111-28. doi: 10.1109/TMI.2007.904691. IEEE Trans Med Imaging. 2008. PMID: 18270067 Review.
Cited by
-
Optimizing nondecomposable loss functions in structured prediction.IEEE Trans Pattern Anal Mach Intell. 2013 Apr;35(4):911-24. doi: 10.1109/TPAMI.2012.168. IEEE Trans Pattern Anal Mach Intell. 2013. PMID: 22868650 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous