Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;46(4):462-73.
doi: 10.1080/02841860701218626.

A review of the impact of photon and proton external beam radiotherapy treatment modalities on the dose distribution in field and out-of-field; implications for the long-term morbidity of cancer survivors

Affiliations
Review

A review of the impact of photon and proton external beam radiotherapy treatment modalities on the dose distribution in field and out-of-field; implications for the long-term morbidity of cancer survivors

Asa Palm et al. Acta Oncol. 2007.

Abstract

The use of untraditional treatment modalities for external beam radiotherapy such as intensity modulated radiation therapy (IMRT) and proton beam therapy is increasing. This review focuses on the changes in the dose distribution and the impact on radiation related risks for long-term cancer survivors. We compare conventional radiotherapy, IMRT, and proton beam therapy based on published treatment planning studies as well as published measurements and Monte Carlo simulations of out-of-field dose distributions. Physical dose parameters describing the dose distribution in the target volume, the conformity index, the dose distribution in organs at risk, and the dose distribution in non-target tissue, respectively, are extracted from the treatment planning studies. Measured out-of-field dose distributions are presented as the dose equivalent as a function of distance from the treatment field. Data in the literature clearly shows that, compared with conventional radiotherapy, IMRT improves the dose distribution in the target volume, which may increase the probability of tumor control. IMRT also seems to increase the out-of-field dose distribution, as well as the irradiated non-target volume, although the data is not consistent, leading to a potentially increased risk of radiation induced secondary malignancies, while decreasing the dose to normal tissues close to the target volume, reducing the normal tissue complication probability. Protons show no or only minor advantage on the dose distribution in the target volume and the conformity index compared to IMRT. However, the data consistently shows that proton beam therapy substantially decreases the OAR average dose compared to the other two techniques. It is also clear that protons provide an improved dose distribution in non-target tissues compared to conventional radiotherapy and IMRT. IMRT and proton beam therapy may significantly improve tumor control for cancer patients and quality of life for long-term cancer survivors.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources