Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun;22(3):295-307.
doi: 10.1002/tox.20263.

Predicting acute copper toxicity to valve closure behavior in the freshwater clam Corbicula fluminea supports the biotic ligand model

Affiliations

Predicting acute copper toxicity to valve closure behavior in the freshwater clam Corbicula fluminea supports the biotic ligand model

Chung-Min Liao et al. Environ Toxicol. 2007 Jun.

Abstract

The objective of this paper is to employ biotic ligand model (BLM) to link between acute copper (Cu) toxicity and its effect on valve closure behavior of freshwater clam Corbicula fluminea in order to further support for the BLM that potentially offers a rapid and cost-effective method to conduct the acute toxicity tests for freshwater clam exposed to waterborne Cu. Reanalysis of published experimental data of C. fluminea closure daily rhythm and dose-response profiles based on the laboratory-acclimated clams showed that a BLM-based Hill model best described the free Cu(2+)-activity-valve closure response relationships. Our proposed Cu-BLM-Corbicula model shows that free ionic form of waterborne Cu binds specifically to a biotic ligand (i.e., clam gills) and impairs normal valve closure behavior, indicating that a fixed-level of metal accumulation at a biotic ligand is required to elicit specific biological effects. With derived mechanistic-based Cu-BLM-Corbicula model, we show that the site-specific EC50(t) and valve closure behavior at any integrated time can be well predicted, indicating that our model has the potential to develop a biomonitoring system as a bioassay tool to on-line measure waterborne Cu levels in aquatic systems. Our results confirm that BLM can be improved to analytically and rigorously describe the bioavailable fraction of metal causing toxicity to valve closure behavior in freshwater C. fluminea. We suggest that the Cu-BLM-Corbicula model can be used to assist in developing technically defensible site-specific water quality criteria and performing ecological risk assessment and to promote more focused and efficient uses of resources in the regulation and control of metals and the protection of the aquatic ecosystems.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources