Role of aralar, the mitochondrial transporter of aspartate-glutamate, in brain N-acetylaspartate formation and Ca(2+) signaling in neuronal mitochondria
- PMID: 17497669
- DOI: 10.1002/jnr.21299
Role of aralar, the mitochondrial transporter of aspartate-glutamate, in brain N-acetylaspartate formation and Ca(2+) signaling in neuronal mitochondria
Abstract
Aralar, the Ca(2+)-dependent mitochondrial aspartate-glutamate carrier expressed in brain and skeletal muscle, is a member of the malate-aspartate NADH shuttle. Disrupting the gene for aralar, SLC25a12, in mice has enabled the discovery of two new roles of this carrier. On the one hand, it is required for synthesis of brain aspartate and N-acetylaspartate, a neuron-born metabolite that supplies acetate for myelin lipid synthesis; and on the other, it is essential for the transmission of small Ca(2+) signals to mitochondria via an increase in mitochondrial NADH.
Similar articles
-
Reduced N-acetylaspartate levels in mice lacking aralar, a brain- and muscle-type mitochondrial aspartate-glutamate carrier.J Biol Chem. 2005 Sep 2;280(35):31333-9. doi: 10.1074/jbc.M505286200. Epub 2005 Jun 29. J Biol Chem. 2005. PMID: 15987682
-
Association study of polymorphisms in the mitochondrial aspartate/glutamate carrier SLC25A12 (aralar) gene with schizophrenia.Prog Neuropsychopharmacol Biol Psychiatry. 2007 Oct 1;31(7):1510-3. doi: 10.1016/j.pnpbp.2007.07.010. Epub 2007 Jul 17. Prog Neuropsychopharmacol Biol Psychiatry. 2007. PMID: 17693006
-
Essential role of aralar in the transduction of small Ca2+ signals to neuronal mitochondria.J Biol Chem. 2006 Jan 13;281(2):1039-47. doi: 10.1074/jbc.M507270200. Epub 2005 Nov 3. J Biol Chem. 2006. PMID: 16269409
-
Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs).Biochim Biophys Acta. 2016 Aug;1857(8):1158-1166. doi: 10.1016/j.bbabio.2016.04.003. Epub 2016 Apr 7. Biochim Biophys Acta. 2016. PMID: 27060251 Review.
-
Mitochondrial transporters as novel targets for intracellular calcium signaling.Physiol Rev. 2007 Jan;87(1):29-67. doi: 10.1152/physrev.00005.2006. Physiol Rev. 2007. PMID: 17237342 Review.
Cited by
-
N-Acetylaspartate reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation.Front Neuroenergetics. 2013 Dec 26;5:11. doi: 10.3389/fnene.2013.00011. Front Neuroenergetics. 2013. PMID: 24421768 Free PMC article. Review.
-
Cellular and molecular mechanisms of aspartoacylase and its role in Canavan disease.Cell Biosci. 2024 Apr 6;14(1):45. doi: 10.1186/s13578-024-01224-6. Cell Biosci. 2024. PMID: 38582917 Free PMC article. Review.
-
Transcriptome Analysis Identifies Key Metabolic Changes in the Brain of Takifugu rubripes in Response to Chronic Hypoxia.Genes (Basel). 2022 Jul 27;13(8):1347. doi: 10.3390/genes13081347. Genes (Basel). 2022. PMID: 36011255 Free PMC article.
-
Metabolism changes during aging in the hippocampus and striatum of glud1 (glutamate dehydrogenase 1) transgenic mice.Neurochem Res. 2014;39(3):446-55. doi: 10.1007/s11064-014-1239-9. Epub 2014 Jan 21. Neurochem Res. 2014. PMID: 24442550 Free PMC article.
-
Diabetic retinopathy and damage to mitochondrial structure and transport machinery.Invest Ophthalmol Vis Sci. 2011 Nov 7;52(12):8739-46. doi: 10.1167/iovs.11-8045. Invest Ophthalmol Vis Sci. 2011. PMID: 22003103 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous