Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul 6;282(27):19565-74.
doi: 10.1074/jbc.M701501200. Epub 2007 May 11.

Activation of p61Hck triggers WASp- and Arp2/3-dependent actin-comet tail biogenesis and accelerates lysosomes

Affiliations
Free article

Activation of p61Hck triggers WASp- and Arp2/3-dependent actin-comet tail biogenesis and accelerates lysosomes

Claire Vincent et al. J Biol Chem. .
Free article

Abstract

Secretory lysosomes exist in few cell types, but various mechanisms are involved to ensure their mobilization within the cytoplasm. In phagocytes, lysosome exocytosis is a regulated phenomenon at least in part under the control of the phagocyte-specific and lysosome-associated Src-kinase p61Hck (hematopoietic cell kinase). We show here that p61Hck activation triggered polymerization of actin at the membrane of lysosomes, which resulted in F-actin structures similar to comet tails observed on endocytic vesicles. We correlated this actin-comet biogenesis to a 35% acceleration of p61Hck-lysosomes in cells, which was dependent on actin polymerization and required an intact microtubular network. It was possible to initiate the formation of actin tails on p61Hck-positive lysosomes and on p61Hck-associated latex beads incubated in human phagocyte cytosolic extracts. The in vitro reconstitution on beads indicated that other lysosomal proteins were dispensable in this mechanism. The de novo actin polymerization process was functionally dependent on the kinase activity of Hck, WASp, the Arp2/3 complex, and Cdc42 but not Rac or Rho. Thus, we identified p61Hck as the first lysosomal protein able to recruit the molecular machinery responsible for actin tail formation. Altogether, our results suggest a new mechanism for lysosome motility involving p61Hck, actin-comet tail biogenesis, and the microtubule network.

PubMed Disclaimer

MeSH terms

LinkOut - more resources