Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 May;12(1):38-45.
doi: 10.1038/sj.jidsymp.5650037.

Mechanisms of action of etanercept in psoriasis

Affiliations
Free article
Review

Mechanisms of action of etanercept in psoriasis

Jennifer K Tan et al. J Investig Dermatol Symp Proc. 2007 May.
Free article

Abstract

Psoriasis is a chronic inflammatory disease of the skin affecting up to 2.5% of the world's population. The scaly, erythematous plaques characteristic of this papulosquamous disorder are likely triggered and maintained by cytokines and chemokines manufactured by cells of the immune system. Overproduction of inflammatory mediators, such as tumor necrosis factor-alpha (TNF-alpha) and IFN-gamma, results in a self-sustaining inflammatory cascade, causing abnormal keratinocyte proliferation and differentiation. Therapeutic drug design targeting TNF has led to the emergence of successful biologic agents, such as etanercept, in recent years. Despite extensive clinical trials documenting efficacious clinical response to therapy, there is a paucity of data investigating the molecular mechanisms by which etanercept modulates the improvement of psoriasis. This brief review summarizes recent work investigating the in vivo actions of etanercept, including its effects on various cell types, inflammatory pathways, gene activation, nuclear factor kappa B expression, and apoptosis. The anti-inflammatory properties of etanercept reveal mechanisms by which a TNF blockade may result in the improvement of psoriasis.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms