Kármán vortex street detection by the lateral line
- PMID: 17503054
- DOI: 10.1007/s00359-007-0230-1
Kármán vortex street detection by the lateral line
Abstract
Fish use the lateral line system for prey detection, predator avoidance, schooling behavior, intraspecific communication and spatial orientation. In addition the lateral line may be important for station holding and for the detection of the hydrodynamic trails (vortex streets) generated by swimming fish. We investigated the responses of anterior lateral line nerve fibers of goldfish, Carassius auratus, to unidirectional water flow (10 cm s(-1)) and to running water that contained a Kármán vortex street. Compared to still water conditions, both unidirectional water flow and Kármán vortex streets caused a similar increase in the discharge rate of anterior lateral line nerve fibers. If exposed to a Kármán vortex street, the amplitude of spike train frequency spectra increased at the vortex shedding frequency. This increase was especially pronounced if the fish intercepted the edge of a Kármán vortex street. Our data show that the vortex shedding frequency can be retrieved from the responses of anterior lateral line nerve fibers.
Similar articles
-
The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow.J Exp Biol. 2006 Oct;209(Pt 20):4077-90. doi: 10.1242/jeb.02487. J Exp Biol. 2006. PMID: 17023602
-
Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Karman gait.J Exp Biol. 2004 Sep;207(Pt 20):3495-506. doi: 10.1242/jeb.01125. J Exp Biol. 2004. PMID: 15339945
-
Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street.Bioinspir Biomim. 2018 Mar 14;13(3):035001. doi: 10.1088/1748-3190/aaa97f. Bioinspir Biomim. 2018. PMID: 29355109
-
Behavior, Electrophysiology, and Robotics Experiments to Study Lateral Line Sensing in Fishes.Integr Comp Biol. 2018 Nov 1;58(5):874-883. doi: 10.1093/icb/icy066. Integr Comp Biol. 2018. PMID: 29982706 Free PMC article. Review.
-
Coping with flow: behavior, neurophysiology and modeling of the fish lateral line system.Biol Cybern. 2012 Dec;106(11-12):627-42. doi: 10.1007/s00422-012-0525-3. Epub 2012 Oct 26. Biol Cybern. 2012. PMID: 23099522 Review.
Cited by
-
A fish perspective: detecting flow features while moving using an artificial lateral line in steady and unsteady flow.J R Soc Interface. 2014 Oct 6;11(99):20140467. doi: 10.1098/rsif.2014.0467. J R Soc Interface. 2014. PMID: 25079867 Free PMC article.
-
Bidirectional biomimetic flow sensing with antiparallel and curved artificial hair sensors.Beilstein J Nanotechnol. 2019 Jan 3;10:32-46. doi: 10.3762/bjnano.10.4. eCollection 2019. Beilstein J Nanotechnol. 2019. PMID: 30680277 Free PMC article.
-
Drag force acting on a neuromast in the fish lateral line trunk canal. I. Numerical modelling of external-internal flow coupling.J R Soc Interface. 2009 Jul 6;6(36):627-40. doi: 10.1098/rsif.2008.0291. Epub 2008 Oct 16. J R Soc Interface. 2009. PMID: 18926967 Free PMC article.
-
The incomparable fascination of comparative physiology: 40 years with animals in the field and laboratory.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 Mar;210(2):211-226. doi: 10.1007/s00359-023-01681-3. Epub 2023 Nov 21. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024. PMID: 37987801 Free PMC article.
-
Responses of medullary lateral line units of the rudd, Scardinius erythrophthalmus, and the nase, Chondrostoma nasus, to vortex streets.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2018 Feb;204(2):155-166. doi: 10.1007/s00359-017-1217-1. Epub 2017 Oct 26. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2018. PMID: 29075852
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources