Prediction of enzyme kinetic parameters based on statistical learning
- PMID: 17503358
Prediction of enzyme kinetic parameters based on statistical learning
Abstract
Values of enzyme kinetic parameters are a key requisite for the kinetic modelling of biochemical systems. For most kinetic parameters, however, not even an order of magnitude is known, so the estimation of model parameters from experimental data remains a major task in systems biology. We propose a statistical approach to infer values for kinetic parameters across species and enzymes making use of parameter values that have been measured under various conditions and that are nowadays stored in databases. We fit the data by a statistical regression model in which the substrate, the combination enzyme-substrate and the combination organism-substrate have a linear effect on the logarithmic parameter value. As a result, we obtain predictions and error ranges for unknown enzyme parameters. We apply our method to decadic logarithmic Michaelis-Menten constants from the BRENDA database and confirm the results with leave-one-out crossvalidation, in which we mask one value at a time and predict it from the remaining data. For a set of 8 metabolites we obtain a standard prediction error of 1.01 for the deviation of the predicted values from the true values, while the standard deviation of the experimental values is 1.16. The method is applicable to other types of kinetic parameters for which many experimental data are available.
Similar articles
-
Experimental design for optimal parameter estimation of an enzyme kinetic process based on the analysis of the Fisher information matrix.J Theor Biol. 2006 Jan 7;238(1):111-23. doi: 10.1016/j.jtbi.2005.05.016. Epub 2005 Jul 22. J Theor Biol. 2006. PMID: 16039672
-
Integration of enzyme kinetic data from various sources.In Silico Biol. 2007;7(2 Suppl):S73-9. In Silico Biol. 2007. PMID: 17822393 Review.
-
Progress curve analysis for enzyme and microbial kinetic reactions using explicit solutions based on the Lambert W function.J Microbiol Methods. 2004 Dec;59(3):317-26. doi: 10.1016/j.mimet.2004.06.013. J Microbiol Methods. 2004. PMID: 15488275
-
Calculating enzyme kinetic parameters from protein structures.Biochem Soc Trans. 2008 Feb;36(Pt 1):51-4. doi: 10.1042/BST0360051. Biochem Soc Trans. 2008. PMID: 18208384 Review.
-
Measurements of kinetic parameters in a microfluidic reactor.Anal Chem. 2006 Dec 15;78(24):8273-80. doi: 10.1021/ac061189l. Anal Chem. 2006. PMID: 17165816
Cited by
-
NNKcat: deep neural network to predict catalytic constants (Kcat) by integrating protein sequence and substrate structure with enhanced data imbalance handling.Brief Bioinform. 2025 May 1;26(3):bbaf212. doi: 10.1093/bib/bbaf212. Brief Bioinform. 2025. PMID: 40370097 Free PMC article.
-
A unified framework for estimating parameters of kinetic biological models.BMC Bioinformatics. 2015 Mar 27;16:104. doi: 10.1186/s12859-015-0500-9. BMC Bioinformatics. 2015. PMID: 25886743 Free PMC article.
-
An analytical theory of balanced cellular growth.Nat Commun. 2020 Mar 6;11(1):1226. doi: 10.1038/s41467-020-14751-w. Nat Commun. 2020. PMID: 32144263 Free PMC article.
-
GraphKM: machine and deep learning for KM prediction of wildtype and mutant enzymes.BMC Bioinformatics. 2024 Mar 28;25(1):135. doi: 10.1186/s12859-024-05746-1. BMC Bioinformatics. 2024. PMID: 38549073 Free PMC article.
-
Molecular-level tradeoffs and metabolic adaptation to simultaneous stressors.Curr Opin Biotechnol. 2010 Oct;21(5):670-6. doi: 10.1016/j.copbio.2010.05.011. Epub 2010 Jul 14. Curr Opin Biotechnol. 2010. PMID: 20637598 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Research Materials