Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Dec;261(6 Pt 2):H2031-43.
doi: 10.1152/ajpheart.1991.261.6.H2031.

Arteriovenous oxygen diffusion shunt is negligible in resting and working gracilis muscles

Affiliations

Arteriovenous oxygen diffusion shunt is negligible in resting and working gracilis muscles

C R Honig et al. Am J Physiol. 1991 Dec.

Abstract

Distribution of O2 within and among arterioles and venules was determined in dog and rat gracilis muscles with a cryospectrophotometric method. Saturation in 40-microns arterioles was not demonstrably different from saturation in the aorta even when flow was abnormally low. Arterioles greater than 40 microns ran parallel to venules. Measurements and a mathematical model indicate that diffusive shunting is negligible for typical separation distances between arterioles and venules. Most separation distances were greater than 30 microns. In some venule segments less than 15 microns from an arteriole, saturation within 10 microns of the wall facing the arteriole was higher than at other locations within the venule. However, saturation in the population of venules did not increase with venule diameter, and mean venular saturation was not different from saturation in effluent blood. We make the following conclusions: 1) a small arteriovenous diffusive O2 flux exists in postural muscles; 2) contribution of this flux to O2 mass balance is negligible; 3) O2 diffusivity of the arteriolar wall and surrounding tissue in vivo cannot be much higher than O2 diffusivity determined in vitro; and 4) effluent PO2 closely approximates mean end-capillary PO2.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources