Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Apr-May;59(4-5):299-307.
doi: 10.1080/15216540701225966.

Zinc deficiency in neuronal biology

Affiliations
Free article
Review

Zinc deficiency in neuronal biology

Gerardo G Mackenzie et al. IUBMB Life. 2007 Apr-May.
Free article

Abstract

Adverse nutritional and environmental conditions during early development can irreversibly affect the nervous system. Zinc (Zn) deficiency associated with inadequate Zn intake and undernutrition is frequent throughout the world. Increasing evidence indicates that developmental Zn deficiency can lead to alterations in neonate and infant behavior, cognitive and motor performance that persist into adulthood. This review will address current knowledge on the events that are triggered in neuronal cells when Zn availability decreases and discuss their consequences on neuronal function and development. In neuronal cells, Zn deficiency induces oxidative stress, alters the normal structure and dynamics of the cytoskeleton, affects the modulation of transcription factors AP-1, NF-betaB and NFAT and induces a decreased cell proliferation and increased apoptotic death. Thus, these closely associated events can affect neuronal function and critical developmental events (neuronal proliferation, differentiation, plasticity and survival) when Zn availability decreases.

PubMed Disclaimer

Publication types

LinkOut - more resources