Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2007 Oct;96(10):2723-34.
doi: 10.1002/jps.20900.

Utilization of a modified special-cubic design and an electronic tongue for bitterness masking formulation optimization

Affiliations
Clinical Trial

Utilization of a modified special-cubic design and an electronic tongue for bitterness masking formulation optimization

Lianli Li et al. J Pharm Sci. 2007 Oct.

Abstract

A unique modification of simplex design was applied to an electronic tongue (E-Tongue) analysis in bitterness masking formulation optimization. Three formulation variables were evaluated in the simplex design, i.e. concentrations of two taste masking polymers, Amberlite and Carbopol, and pH of the granulating fluid. Response of the design was a bitterness distance measured using an E-Tongue by applying a principle component analysis, which represents taste masking efficiency of the formulation. The smaller the distance, the better the bitterness masking effect. Contour plots and polynomial equations of the bitterness distance response were generated as a function of formulation composition and pH. It was found that interactions between polymer and pH reduced the bitterness of the formulation, attributed to pH-dependent ionization and complexation properties of the ionic polymers, thus keeping the drug out of solution and unavailable to bitterness perception. At pH 4.9 and an Amberlite/Carbopol ratio of 1.4:1 (w/w), the optimal taste masking formulation was achieved and in agreement with human gustatory sensation study results. Therefore, adopting a modified simplex experimental design on response measured using an E-Tongue provided an efficient approach to taste masking formulation optimization using ionic binding polymers.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources