Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun;1(3):27-35.
doi: 10.1049/iet-nbt:20060021.

FISH and chips: chromosomal analysis on microfluidic platforms

Affiliations

FISH and chips: chromosomal analysis on microfluidic platforms

V J Sieben et al. IET Nanobiotechnol. 2007 Jun.

Abstract

Interphase fluorescence in situ hybridisation (FISH) is a sensitive diagnostic tool used for the detection of alterations in the genome on cell-by-cell basis. However, the cost-per-test and the technical complexity of current FISH protocols have slowed its widespread utilisation in clinical settings. For many cancers, the lack of a cost-effective and informative diagnostic method has compromised the quality of life for patients. We present the first demonstration of a microchip-based FISH protocol, coupled with a novel method to immobilise peripheral blood mononuclear cells inside microfluidic channels. These first on-chip implementations of FISH allow several chromosomal abnormalities associated with multiple myeloma to be detected with a ten-fold higher throughput and 1/10-th the reagent consumption of the traditional slide-based method. Moreover, the chip test is performed within hours whereas the conventional protocol required days. In addition, two on-chip methods to enhance the hybridisation aspects of FISH have been examined: mechanical and electrokinetic pumping. Similar agitation methods have led to significant improvements in hybridisation efficiency with DNA microarray work, but with this cell-based method the benefits were moderate. On-chip FISH technology holds promise for sophisticated and cost-effective screening of cancer patients at every clinic visit.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources