Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct;12(10):2997-3006.
doi: 10.1089/ten.2006.12.2997.

Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro

Affiliations

Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro

Sang-Soo Kim et al. Tissue Eng. 2006 Oct.

Abstract

Although biodegradable polymer/ceramic composite scaffolds can overcome the limitations of conventional ceramic bone substitutes, the osteogenic potential of these scaffolds needs to be further enhanced for efficient bone tissue engineering. In this study, bonelike apatite was efficiently coated onto the scaffold surface by using polymer/ceramic composite scaffolds instead of polymer scaffolds and by using an accelerated biomimetic process to enhance the osteogenic potential of the scaffold. The creation of bonelike, apatite-coated polymer scaffold was achieved by incubating the scaffolds in simulated body fluid (SBF). The apatite growth on porous poly(D,L-lactic-co-glycolic acid)/nanohydroxyapatite (PLGA/ HA) composite scaffolds was significantly faster than on porous PLGA scaffolds. In addition, the distribution of coated apatite was more uniform on PLGA/HA scaffolds than on PLGA scaffolds. After a 5-day incubation period, the mass of apatite coated onto PLGA/HA scaffolds incubated in 5 x SBF was 2.3-fold higher than PLGA/HA scaffolds incubated in 1 x SBF. Furthermore, when the scaffolds were incubated in 5 x SBF for 5 days, the mass of apatite coated onto PLGA/HA scaffolds was 4.5-fold higher than PLGA scaffolds. These results indicate that the biomimetic apatite coating can be accelerated by using a polymer/ceramic composite scaffold and concentrated SBF. When seeded with osteoblasts, the apatite-coated PLGA/HA scaffolds exhibited significantly higher cell growth, alkaline phosphatase activity, and mineralization in vitro compared to the apatite-coated PLGA scaffolds. Therefore, the apatite-coated PLGA/HA scaffolds may provide enhanced osteogenic potential when used as scaffold for bone tissue engineering.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources