The impact of genome analyses on our understanding of ammonia-oxidizing bacteria
- PMID: 17506671
- DOI: 10.1146/annurev.micro.61.080706.093449
The impact of genome analyses on our understanding of ammonia-oxidizing bacteria
Abstract
The availability of whole-genome sequences for ammonia-oxidizing bacteria (AOB) has led to dramatic increases in our understanding of these environmentally important microorganisms. Their genomes are smaller than many other members of the proteobacteria and may indicate genome reductions consistent with their limited lifestyle. The genomes have a surprising level of gene repetition including genes for ammonia catabolism, iron acquisition, and insertion sequences. The gene profiles reveal limited genes for catabolism and transport of complex organic compounds, but complete pathways for some other compounds. This led to the observation of chemolithoheterotrophic growth of Nitrosomonas europaea. Genes for sucrose synthesis/degradation were identified. The core metabolic module of aerobic ammonia oxidation, the extraction of electrons from hydroxylamine to generate proton-motive force and reductant, has evolutionary roots in the denitrification inventory of anaerobic sulfur-dependent bacteria. The extension by ammonia monooxygenase provides a mechanism to feed this module using ammonia and O(2).
Similar articles
-
Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation.Environ Microbiol. 2007 Dec;9(12):2993-3007. doi: 10.1111/j.1462-2920.2007.01409.x. Environ Microbiol. 2007. PMID: 17991028
-
Hydroxylamine addition impact to Nitrosomonas europaea activity in the presence of monochloramine.Water Res. 2015 Jan 1;68:719-30. doi: 10.1016/j.watres.2014.10.054. Water Res. 2015. PMID: 25462776
-
Structure and sequence conservation of hao cluster genes of autotrophic ammonia-oxidizing bacteria: evidence for their evolutionary history.Appl Environ Microbiol. 2005 Sep;71(9):5371-82. doi: 10.1128/AEM.71.9.5371-5382.2005. Appl Environ Microbiol. 2005. PMID: 16151127 Free PMC article.
-
Nitric oxide: interaction with the ammonia monooxygenase and regulation of metabolic activities in ammonia oxidizers.Methods Enzymol. 2008;440:121-35. doi: 10.1016/S0076-6879(07)00807-5. Methods Enzymol. 2008. PMID: 18423214 Review.
-
Role of nitrogen oxides in the metabolism of ammonia-oxidizing bacteria.Biochem Soc Trans. 2006 Feb;34(Pt 1):179-81. doi: 10.1042/BST0340179. Biochem Soc Trans. 2006. PMID: 16417515 Review.
Cited by
-
Adaptations to submarine hydrothermal environments exemplified by the genome of Nautilia profundicola.PLoS Genet. 2009 Feb;5(2):e1000362. doi: 10.1371/journal.pgen.1000362. Epub 2009 Feb 6. PLoS Genet. 2009. PMID: 19197347 Free PMC article.
-
Enrichment and characterization of ammonia-oxidizing archaea from the open ocean: phylogeny, physiology and stable isotope fractionation.ISME J. 2011 Nov;5(11):1796-808. doi: 10.1038/ismej.2011.58. Epub 2011 May 12. ISME J. 2011. PMID: 21562601 Free PMC article.
-
Chemoorganoheterotrophic growth of Nitrosomonas europaea and Nitrosomonas eutropha.Curr Microbiol. 2009 Aug;59(2):130-8. doi: 10.1007/s00284-009-9409-8. Epub 2009 May 19. Curr Microbiol. 2009. PMID: 19452213
-
The history of aerobic ammonia oxidizers: from the first discoveries to today.J Microbiol. 2014 Jul;52(7):537-47. doi: 10.1007/s12275-014-4114-0. Epub 2014 Jun 28. J Microbiol. 2014. PMID: 24972807 Review.
-
Metagenomic approaches reveal differences in genetic diversity and relative abundance of nitrifying bacteria and archaea in contrasting soils.Sci Rep. 2021 Aug 5;11(1):15905. doi: 10.1038/s41598-021-95100-9. Sci Rep. 2021. PMID: 34354121 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources