Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul;98(1):405-13.
doi: 10.1152/jn.00345.2007. Epub 2007 May 16.

Local and intersegmental interactions of coordinating neurons and local circuits in the swimmeret system

Affiliations
Free article

Local and intersegmental interactions of coordinating neurons and local circuits in the swimmeret system

Brian Mulloney et al. J Neurophysiol. 2007 Jul.
Free article

Abstract

During forward swimming, periodic movements of swimmerets on different segments of the crayfish abdomen progress from back to front with the same period. Information encoded as bursts of spikes by coordinating neurons in each segmental ganglion is necessary for this coherent organization. This information is conducted to targets in other ganglia. When an individual coordinating neuron is stimulated at different phases in the system's cycle of activity, the timing of motor output from other ganglia may be altered. In models of this coordinating circuit, we assumed that each coordinating neuron encodes information about the state of the local pattern-generating circuit in its home ganglion but is not part of that local circuit. We tested this assumption by stimulating individual coordinating neurons of two kinds -- ASC(E) and DSC -- at different phases under two conditions: with the target ganglion functional, and with the target ganglion silenced. Blocking a DSC neuron's target ganglion did not alter its negligible influence on the output from its home ganglion; the phase-response curves (PRC) remained flat. Blocking an ASC(E) neuron's target ganglion significantly affected its influence on the output from its home ganglion. We had predicted that ASC(E)'s modest phase-dependent influence would disappear with the target silenced, but instead the amplitude of the PRCs increased significantly. Thus we have two different results: DSC neurons conformed to prediction based on the models' assumptions, but ASC(E) neurons showed an unexpected property, one that is partially masked when the bidirectional flow of information between neighboring ganglia is operating normally.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources