Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991;86(1):25-41.
doi: 10.1007/BF01250373.

Brain kinetics of L-[beta-11C]dopa in humans studied by positron emission tomography

Affiliations

Brain kinetics of L-[beta-11C]dopa in humans studied by positron emission tomography

P Hartvig et al. J Neural Transm Gen Sect. 1991.

Abstract

The in vivo dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) labelled with 11C in the beta position has been used for positron emission tomography studies of L-DOPA utilization in the brain. The brain uptake and kinetics of L-[11C]DOPA-derived radioactivity were studied in healthy male volunteers, and the specific utilization, i.e. decarboxylation rate of L-[11C]DOPA in different brain areas, was quantified using a brain region devoid of specific L-[11C]DOPA utilization as reference. Total uptake of L-[11C]DOPA-derived radioactivity measured in the brain varied two- to three-fold between subjects, with highest radioactivity in the striatal region. Specific utilization of L-[11C]DOPA radioactivity in the striatal region and in the prefrontal cortex varied twofold between subjects. No specific utilization was observed in other regions of the brain. The uptake of radioactivity in the brain increased dose-dependently with the simultaneous administration of unlabelled L-DOPA up to 10 mg. On the other hand, a decrease in brain radioactivity uptake was measured after pretreatment with 1 mg/kg oral L-DOPA, indicating competition for transport across the blood-brain barrier. Benserazide 0.5 mg/kg orally increased somewhat the radioactivity uptake to the brain. None of these pharmacological perturbations demonstrated any clearcut effect on specific utilization of L-[11C]DOPA. Thus, 11C-labelled L-DOPA is introduced as an alternative to the well-established L-6-[18F]fluoro-DOPA methodology in clinical studies on brain L-DOPA uptake and dopamine synthesis.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Comput Assist Tomogr. 1982 Apr;6(2):365-72 - PubMed
    1. J Nucl Med. 1988 Mar;29(3):363-9 - PubMed
    1. J Neurochem. 1987 Apr;48(4):1077-82 - PubMed
    1. J Neurol Neurosurg Psychiatry. 1986 Aug;49(8):853-60 - PubMed
    1. Brain Res. 1978 Apr 21;145(1):59-67 - PubMed

Publication types