Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug 1;85(10):2216-23.
doi: 10.1002/jnr.21360.

Peroxynitrite-mediated oxidative damage to brain mitochondria: Protective effects of peroxynitrite scavengers

Affiliations

Peroxynitrite-mediated oxidative damage to brain mitochondria: Protective effects of peroxynitrite scavengers

Indrapal N Singh et al. J Neurosci Res. .

Abstract

Peroxynitrite-mediated oxidative damage has been implicated in brain mitochondrial respiratory dysfunction after traumatic brain injury (TBI), which precedes the onset of neuronal loss. The aim of this study was to investigate the detrimental effects of the peroxynitrite donor SIN-1 (3-morpholinosydnonimine) on isolated brain mitochondria and to screen penicillamine, a stoichiometric (1:1) peroxynitrite-scavenging agent, and tempol, a catalytic scavenger of peroxynitrite-derived radicals, as antioxidant mitochondrial protectants. Exposure of the isolated mitochondria to SIN-1 caused a significant dose-dependent decrease in the respiratory control ratio and was accompanied by a significant increase in state II respiration, followed by significant decreases (P < 0.05) in states III and V. These functional alterations occurred together with significant increases in mitochondrial protein carbonyl (PC), lipid peroxidation-related 4-hydroxynonenal (4-HNE), and 3-nitrotyrosine (3-NT) content. Penicillamine hydrochloride (10 microM) partially but significantly (P < 0.05) protected against SIN-1-induced decreases in states III and V. However, a 2.5 microM concentration of tempol was able to significantly antagonize a 4-fold molar excess (10 microM) concentration of SIN-1 as effectively as were higher tempol concentrations, consistent with the likelihood that tempol works by a catalytic mechanism. The protection of mitochondrial respiration by penicillamine and tempol occurred in parallel with attenuation of PC, 4-HNE, and 3-NT. These results indicate that SIN-1 causes mitochondrial oxidative damage and complex I dysfunction and that antioxidant compounds that target either peroxynitrite or its radicals may be effective mitochondrial protectants in the treatment of neural injury.

PubMed Disclaimer

MeSH terms

LinkOut - more resources