Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun;9(6):731-9.
doi: 10.1089/ars.2007.1556.

VEGF signaling through NADPH oxidase-derived ROS

Affiliations

VEGF signaling through NADPH oxidase-derived ROS

Masuko Ushio-Fukai. Antioxid Redox Signal. 2007 Jun.

Abstract

Angiogenesis is a key process involved in normal development and wound repair, as well as ischemic heart and limb diseases, and atherosclerosis. Vascular endothelial growth factor (VEGF), a potent angiogenesis factor, stimulates proliferation, migration, and tube formation of endothelial cells (ECs), primarily through the VEGF receptor type2 (VEGFR2). Reactive oxygen species (ROS) function as signaling molecules to mediate biological responses. In ECs, NADPH oxidase is one of the major sources of ROS and consists of catalytic subunits (Nox1, Nox2, and Nox4), p22phox, p47phox, p67phox, and the small GTPase Rac1. VEGF stimulates ROS production via activation of gp91phox (Nox2)-based NADPH oxidase, and ROS are involved in VEGFR2-mediated signaling linked to EC migration and proliferation. Moreover, ROS derived from NADPH oxidase are involved in postnatal angiogenesis. Localizing NADPH oxidase and its regulators at the specific subcellular compartment is an important mechanism for activating specific redox signaling events. This review focuses on a role of NADPH oxidase-derived ROS in angiogenesis and critical regulators involved in generation of spatially and temporally restricted ROS-dependent VEGF signaling at leading edge, focal adhesions/complexes, caveolae/lipid rafts, and cell-cell junctions in ECs. Understanding these mechanisms should facilitate the development of new therapeutic strategies to modulate new blood vessel formation.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources