Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Feb;19(1):1-9.
doi: 10.1016/j.jelekin.2007.04.001. Epub 2007 May 21.

Automatic decomposition of multichannel intramuscular EMG signals

Affiliations

Automatic decomposition of multichannel intramuscular EMG signals

J R Florestal et al. J Electromyogr Kinesiol. 2009 Feb.

Abstract

We describe an automatic algorithm for decomposing multichannel EMG signals into their component motor unit action potential (MUAP) trains, including signals from widely separated recording sites in which MUAPs exhibit appreciable interchannel offset and jitter. The algorithm has two phases. In the clustering phase, the distinct, recurring MUAPs in each channel are identified, the ones that correspond to the same motor units are determined by their temporal relationships, and multichannel templates are computed. In the identification stage, the MUAP discharges in the signal are identified using matched filtering and superimposition resolution techniques. The algorithm looks for the MUAPs with the largest single channel components first, using matches in one channel to guide the search in other channels, and using information from the other channels to confirm or refute each identification. For validation, the algorithm was used to decompose 10 real 6-to-8-channel EMG signals containing activity from up to 25 motor units. Comparison with expert manual decomposition showed that the algorithm identified more than 75% of the total 176 MUAP trains with an accuracy greater than 95%. The algorithm is fast, robust, and shows promise to be accurate enough to be a useful tool for decomposing multichannel signals. It is freely available at http://emglab.stanford.edu.

PubMed Disclaimer

Publication types

LinkOut - more resources