Whole-grain foods do not affect insulin sensitivity or markers of lipid peroxidation and inflammation in healthy, moderately overweight subjects
- PMID: 17513398
- DOI: 10.1093/jn/137.6.1401
Whole-grain foods do not affect insulin sensitivity or markers of lipid peroxidation and inflammation in healthy, moderately overweight subjects
Abstract
High intakes of whole grain foods are inversely related to the incidence of coronary heart diseases and type 2 diabetes, but the mechanisms remain unclear. Our study aimed to evaluate the effects of a diet rich in whole grains compared with a diet containing the same amount of refined grains on insulin sensitivity and markers of lipid peroxidation and inflammation. In a randomized crossover study, 22 women and 8 men (BMI 28 +/- 2) were given either whole-grain or refined-grain products (3 bread slices, 2 crisp bread slices, 1 portion muesli, and 1 portion pasta) to include in their habitual daily diet for two 6-wk periods. Peripheral insulin sensitivity was determined by euglycemic hyperinsulinemic clamp tests. 8-Iso-prostaglandin F(2alpha) (8-iso PGF(2alpha)), an F(2)-isoprostane, was measured in the urine as a marker of lipid peroxidation, and highly sensitive C-reactive protein and IL-6 were analyzed in plasma as markers of inflammation. Peripheral insulin sensitivity [mg glucose . kg body wt(-1) . min(-1) per unit plasma insulin (mU/L) x 100] did not improve when subjects consumed whole-grain products (6.8 +/- 3.0 at baseline and 6.5 +/- 2.7 after 6 wk) or refined products (6.4 +/- 2.9 and 6.9 +/- 3.2, respectively) and there were no differences between the 2 periods. Whole-grain consumption also did not affect 8-iso-PGF(2alpha) in urine, IL-6 and C-reactive protein in plasma, blood pressure, or serum lipid concentrations. In conclusion, substitution of whole grains (mainly based on milled wheat) for refined-grain products in the habitual daily diet of healthy moderately overweight adults for 6-wk did not affect insulin sensitivity or markers of lipid peroxidation and inflammation.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
