Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Jun;137(6 Suppl 1):1579S-1585S; discussion 1597S-1598S.
doi: 10.1093/jn/137.6.1579S.

Aromatic amino acid metabolism during liver failure

Affiliations
Free article
Review

Aromatic amino acid metabolism during liver failure

Cornelis H C Dejong et al. J Nutr. 2007 Jun.
Free article

Abstract

Liver failure is associated with hepatic encephalopathy (HE). An imbalance in plasma levels of aromatic amino acids (AAA) phenylalanine, tyrosine, and tryptophan and branched chain amino acids (BCAA) and their BCAA/AAA ratio has been suggested to play a causal role in HE by enhanced brain AAA uptake and subsequently disturbed neurotransmission. Until recently, data on this subject and the role of the liver and splanchnic bed were scarce, particularly in humans, due to inaccessibility of portal and hepatic veins. Here, we discuss, against a background of relevant literature, data obtained in patients undergoing liver resection or with a transjugular intrahepatic portasystemic stent shunt (TIPSS), where these veins are accessible. The BCAA/AAA ratio remained unchanged after major liver resection, but plasma AAA levels were inversely correlated (P < 0.001) with residual liver volume, in keeping with the observed hepatic AAA uptake. In patients with stable cirrhosis and a TIPSS, the plasma BCAA/AAA ratio was lower than in controls (1.19 +/- 0.09 vs. controls: 3.63 +/- 0.34). Gastrointestinal bleeding in cirrhotics with a TIPSS induced disturbances in BCAA levels and the BCAA/AAA ratio and induced catabolism, which could partly be corrected by isoleucine administration. AAA may be important in the pathogenesis of HE, but it is unlikely that they are the sole factors. HE most likely is a syndrome with multifactorial pathogenesis, where hyperammonemia, AAA/BCAA imbalances, inflammation, brain edema, and neurotransmitter changes interact. Novel therapies to normalize AAA levels in patients with liver failure (such as the molecular adsorbent recirculating system dialysis device) should probably be combined with supplementation of e.g. isoleucine and enhancing ammonia excretion by the kidneys.

PubMed Disclaimer

Publication types