Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Jun;137(6 Suppl 2):1616S-1620S.
doi: 10.1093/jn/137.6.1616S.

Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling

Affiliations
Free article
Review

Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling

Masataka Mori. J Nutr. 2007 Jun.
Free article

Abstract

Nitric oxide (NO) is synthesized from arginine and O2 by NO synthase (NOS). Citrulline formed as a by-product of the NOS reaction can be recycled to arginine by argininosuccinate synthetase (AS) and argininosuccinate lyase (AL). We found that AS and sometimes AL are coinduced with inducible NOS (iNOS) in various cells. In these cells, NO was synthesized from citrulline (via arginine) as well as from arginine, indicating operation of the citrulline-NO cycle. On the other hand, we found that arginase isoforms (types I and II) are coinduced with iNOS by LPS in rodent tissues and cultured macrophages. Km values for arginine of arginase I and II (approximately 10 mmol/L) are much higher than that of iNOS (approximately 5 micromol/L), whereas Vmax of arginase I and II were 10(3)-10(4) times higher than that of iNOS in activated macrophages. Thus, Vmax/Km values of arginases were close to that of iNOS, and these enzymes were expected to compete for arginine in the cells. In fact, NO production by iNOS in activated macrophages was decreased by coinduction of arginase I or arginase II. Low concentrations of NO protect cells from apoptosis, whereas excessive NO causes apoptosis. We found that NO causes endoplasmic reticulum (ER) stress, induces a transcription factor, CAAT/enhancer binding protein (C/EBP) homologous protein (CHOP), and leads to apoptosis. These results suggest that the arginine metabolic enzymes and the ER stress-CHOP pathway can be good targets to regulate NO production and NO-mediated apoptosis in diseases associated with overproduction or impaired production of NO.

PubMed Disclaimer

Publication types