Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun;6(6):440-6.
doi: 10.1038/nmat1910. Epub 2007 May 21.

Origin and control of high-temperature ferromagnetism in semiconductors

Affiliations

Origin and control of high-temperature ferromagnetism in semiconductors

Shinji Kuroda et al. Nat Mater. 2007 Jun.

Abstract

The extensive experimental and computational search for multifunctional materials has resulted in the development of semiconductor and oxide systems, such as (Ga,Mn)N, (Zn,Cr)Te and HfO(2), which exhibit surprisingly stable ferromagnetic signatures despite having a small or nominally zero concentration of magnetic elements. Here, we show that the ferromagnetism of (Zn,Cr)Te, and the associated magnetooptical and magnetotransport functionalities, are dominated by the formation of Cr-rich (Zn,Cr)Te metallic nanocrystals embedded in the Cr-poor (Zn,Cr)Te matrix. Importantly, the formation of these nanocrystals can be controlled by manipulating the charge state of the Cr ions during the epitaxy. The findings provide insight into the origin of ferromagnetism in a broad range of semiconductors and oxides, and indicate possible functionalities of these composite systems. Furthermore, they demonstrate a bottom-up method for self-organized nanostructure fabrication that is applicable to any system in which the charge state of a constituent depends on the Fermi-level position in the host semiconductor.

PubMed Disclaimer

Comment in

LinkOut - more resources