Molecular and cellular mechanisms of the anabolic effect of intermittent PTH
- PMID: 17517365
- PMCID: PMC1995599
- DOI: 10.1016/j.bone.2007.03.017
Molecular and cellular mechanisms of the anabolic effect of intermittent PTH
Abstract
Intermittent administration of parathyroid hormone (PTH) stimulates bone formation by increasing osteoblast number, but the molecular and cellular mechanisms underlying this effect are not completely understood. In vitro and in vivo studies have shown that PTH directly activates survival signaling in osteoblasts; and that delay of osteoblast apoptosis is a major contributor to the increased osteoblast number, at least in mice. This effect requires Runx2-dependent expression of anti-apoptotic genes like Bcl-2. PTH also causes exit of replicating progenitors from the cell cycle by decreasing expression of cyclin D and increasing expression of several cyclin-dependent kinase inhibitors. Exit from the cell cycle may set the stage for pro-differentiating and pro-survival effects of locally produced growth factors and cytokines, the level and/or activity of which are known to be influenced by PTH. Observations from genetically modified mice suggest that the anabolic effect of intermittent PTH requires insulin-like growth factor-I (IGF-I), fibroblast growth factor-2 (FGF-2), and perhaps Wnts. Attenuation of the negative effects of PPAR gamma may also lead to increased osteoblast number. Daily injections of PTH may add to the pro-differentiating and pro-survival effects of locally produced PTH related protein (PTHrP). As a result, osteoblast number increases beyond that needed to replace the bone removed by osteoclasts during bone remodeling. The pleiotropic effects of intermittent PTH, each of which alone may increase osteoblast number, may explain why this therapy reverses bone loss in most osteoporotic individuals regardless of the underlying pathophysiology.
Figures
References
-
- Hodsman AB, Bauer DC, Dempster D, Dian L, Hanley DA, Harris ST, et al. Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev. 2005;26:688–703. - PubMed
-
- Hodsman AB, Hanley DA, Watson PH, Fraher LJ. Parathyroid hormone. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principals of Bone Biology. San Diego: Academic Press; 2002. pp. 1305–24.
-
- Frolik CA, Black EC, Cain RL, Satterwhite JH, Brown-Augsburger PL, Sato M, et al. Anabolic and catabolic bone effects of human parathyroid hormone (1–34) are predicted by duration of hormone exposure. Bone. 2003;33:372–9. - PubMed
-
- Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O’Brien CA, et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology. 2005;146:4577–83. - PubMed
-
- Lindsay R, Nieves J, Henneman E, Shen V, Cosman F. Subcutaneous administration of the amino-terminal fragment of human parathyroid hormone-(1–34): kinetics and biochemical response in estrogenized osteoporotic patients. J Clin Endocrinol Metab. 1993;77:1535–9. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
