Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul 15;74(2):372-81.
doi: 10.1016/j.bcp.2007.02.003. Epub 2007 Feb 12.

Interaction between the catalytic and modifier subunits of glutamate-cysteine ligase

Affiliations

Interaction between the catalytic and modifier subunits of glutamate-cysteine ligase

Yi Yang et al. Biochem Pharmacol. .

Abstract

Glutamate-cysteine ligase (GCL) is the rate-limiting enzyme in the glutathione (GSH) biosynthesis pathway. This enzyme is a heterodimer, comprising a catalytic subunit (GCLC) and a regulatory subunit (GCLM). Although GCLC alone can catalyze the formation of l-gamma-glutamyl-l-cysteine, its binding with GCLM enhances the enzyme activity by lowering the K(m) for glutamate and ATP, and increasing the K(i) for GSH inhibition. To characterize the enzyme structure-function relationship, we investigated the heterodimer formation between GCLC and GCLM, in vivo using the yeast two-hybrid system, and in vitro using affinity chromatography. A strong and specific interaction between GCLC and GCLM was observed in both systems. Deletion analysis indicated that most regions, except a portion of the C-terminal region of GCLC and a portion of the N-terminal region of GCLM, are required for the interaction to occur. Point mutations of selected amino acids were also tested for the binding activity. The GCLC Cys248Ala/Cys249Ala and Pro158Leu mutations enzyme showed the same strength of binding to GCLM as did wild-type GCLC, yet the catalytic activity was dramatically decreased. The results suggest that the heterodimer formation may not be dependent on primary amino-acid sequence but, instead, involves a complex formation of the tertiary structure of both proteins.

PubMed Disclaimer

Publication types