Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006;6(6):573-88.

IMGT standardization for statistical analyses of T cell receptor junctions: the TRAV-TRAJ example

Affiliations
  • PMID: 17518765
Free article

IMGT standardization for statistical analyses of T cell receptor junctions: the TRAV-TRAJ example

Kevin Bleakley et al. In Silico Biol. 2006.
Free article

Abstract

The diversity of immunoglobulin (IG) and T cell receptor (TR) chains depends on several mechanisms: combinatorial diversity, which is a consequence of the number of V, D and J genes and the N-REGION diversity, which creates an extensive and clonal somatic diversity at the V-J and V-D-J junctions. For the IG, the diversity is further increased by somatic hypermutations. The number of different junctions per chain and per individual is estimated to be 10(12). We have chosen the human TRAV-TRAJ junctions as an example in order to characterize the required criteria for a standardized analysis of the IG and TR V-J and V-D-J junctions, based on the IMGT-ONTOLOGY concepts, and to serve as a first IMGT junction reference set (IMGT, http://imgt.cines.fr). We performed a thorough statistical analysis of 212 human rearranged TRAV-TRAJ sequences, which were aligned and analysed by the integrated IMGT/V-QUEST software, which includes IMGT/JunctionAnalysis, then manually expert-verified. Furthermore, we compared these 212 sequences with 37 other human TRAV-TRAJ junction sequences for which some particularities (potential sequence polymorphisms, sequencing errors, etc.) did not allow IMGT/JunctionAnalysis to provide the correct biological results, according to expert verification. Using statistical learning, we constructed an automatic warning system to predict if new, automatically analysed TRAV-TRAJ sequences should be manually re-checked. We estimated the robustness of this automatic warning system.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources