Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2007 May 23:8:129.
doi: 10.1186/1471-2164-8-129.

Rapid evolution of cancer/testis genes on the X chromosome

Affiliations
Clinical Trial

Rapid evolution of cancer/testis genes on the X chromosome

Brian J Stevenson et al. BMC Genomics. .

Abstract

Background: Cancer/testis (CT) genes are normally expressed only in germ cells, but can be activated in the cancer state. This unusual property, together with the finding that many CT proteins elicit an antigenic response in cancer patients, has established a role for this class of genes as targets in immunotherapy regimes. Many families of CT genes have been identified in the human genome, but their biological function for the most part remains unclear. While it has been shown that some CT genes are under diversifying selection, this question has not been addressed before for the class as a whole.

Results: To shed more light on this interesting group of genes, we exploited the generation of a draft chimpanzee (Pan troglodytes) genomic sequence to examine CT genes in an organism that is closely related to human, and generated a high-quality, manually curated set of human:chimpanzee CT gene alignments. We find that the chimpanzee genome contains homologues to most of the human CT families, and that the genes are located on the same chromosome and at a similar copy number to those in human. Comparison of putative human:chimpanzee orthologues indicates that CT genes located on chromosome X are diverging faster and are undergoing stronger diversifying selection than those on the autosomes or than a set of control genes on either chromosome X or autosomes.

Conclusion: Given their high level of diversifying selection, we suggest that CT genes are primarily responsible for the observed rapid evolution of protein-coding genes on the X chromosome.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Distribution of dN/dS ratios for CT genes and controls. The proportion of genes in each category with ratios in intervals A-I is shown. The categories are: CT-X, CT genes on chromosome X (N = 33); CT-nonX, CT genes not on chromosome X (N = 49); Control-X, control genes on chromosome X (N = 64); Control-nonX, control genes not on chromosome X (N = 71). The intervals are: 0 ≤ A ≤ 0.25; 0.25 < B ≤ 0.5; 0.5 < C ≤ 0.75; 0.75 < D ≤ 1.0; 1.0 < E ≤ 1.25; 1.25 < F ≤ 1.5; 1.5 < G ≤ 1.75; 1.75 < H ≤ 2; 2 < I ≤ 4. Genes which had no synonymous changes (dN/dS denoted '∞' in Table 2) were omitted from the analysis.

References

    1. Scanlan MJ, Simpson AJ, Old LJ. The cancer/testis genes: review, standardization, and commentary. Cancer Immun. 2004;4:1. - PubMed
    1. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254:1643–1647. doi: 10.1126/science.1840703. - DOI - PubMed
    1. Chen YT, Scanlan MJ, Sahin U, Tureci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M, Old LJ. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proceedings of the National Academy of Sciences of the United States of America. 1997;94:1914–1918. doi: 10.1073/pnas.94.5.1914. - DOI - PMC - PubMed
    1. Chen YT, Scanlan MJ, Venditti CA, Chua R, Theiler G, Stevenson BJ, Iseli C, Gure AO, Vasicek T, Strausberg RL, Jongeneel CV, Old LJ, Simpson AJ. Identification of cancer/testis-antigen genes by massively parallel signature sequencing. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:7940–7945. doi: 10.1073/pnas.0502583102. - DOI - PMC - PubMed
    1. Chen YT, Iseli C, Venditti CA, Old LJ, Simpson AJ, Jongeneel CV. Identification of a new cancer/testis gene family, CT47, among expressed multicopy genes on the human X chromosome. Genes, chromosomes & cancer. 2006;45:392–400. doi: 10.1002/gcc.20298. - DOI - PubMed

Publication types