Circuit motifs for spatial orientation behaviors identified by neural network optimization
- PMID: 17522174
- DOI: 10.1152/jn.00074.2007
Circuit motifs for spatial orientation behaviors identified by neural network optimization
Abstract
Spatial orientation behavior is universal among animals, but its neuronal basis is poorly understood. The main objective of the present study was to identify candidate patterns of neuronal connectivity (motifs) for two widely recognized classes of spatial orientation behaviors: hill climbing, in which the organism seeks the highest point in a spatial gradient, and goal seeking, in which the organism seeks an intermediate point in the gradient. Focusing on simple networks of graded processing neurons characteristic of Caenorhabditis elegans and other nematodes, we used an unbiased optimization algorithm to seek values of neuronal time constants, resting potentials, and synaptic strengths sufficient for each type of behavior. We found many different hill-climbing and goal-seeking networks that performed equally well in the two tasks. Surprisingly, however, each hill-climbing network represented one of just three fundamental circuit motifs, and each goal-seeking network comprised two of these motifs acting in concert. These motifs are likely to inform the search for the real circuits that underlie these behaviors in nematodes and other organisms.
Similar articles
-
A neural network model of chemotaxis predicts functions of synaptic connections in the nematode Caenorhabditis elegans.J Comput Neurosci. 2004 Sep-Oct;17(2):137-47. doi: 10.1023/B:JCNS.0000037679.42570.d5. J Comput Neurosci. 2004. PMID: 15306736
-
Stochastic formulation for a partial neural circuit of C. elegans.Bull Math Biol. 2004 Jul;66(4):727-43. doi: 10.1016/j.bulm.2003.10.007. Bull Math Biol. 2004. PMID: 15210315
-
A principle for learning egocentric-allocentric transformation.Neural Comput. 2008 Mar;20(3):709-37. doi: 10.1162/neco.2007.10-06-361. Neural Comput. 2008. PMID: 18045016
-
The computational worm: spatial orientation and its neuronal basis in C. elegans.Curr Opin Neurobiol. 2011 Oct;21(5):782-90. doi: 10.1016/j.conb.2011.06.009. Epub 2011 Jul 18. Curr Opin Neurobiol. 2011. PMID: 21764577 Free PMC article. Review.
-
Grid cells: the position code, neural network models of activity, and the problem of learning.Hippocampus. 2008;18(12):1283-300. doi: 10.1002/hipo.20519. Hippocampus. 2008. PMID: 19021263 Review.
Cited by
-
The C. elegans Connectome Consists of Homogenous Circuits with Defined Functional Roles.PLoS Comput Biol. 2016 Sep 8;12(9):e1005021. doi: 10.1371/journal.pcbi.1005021. eCollection 2016 Sep. PLoS Comput Biol. 2016. PMID: 27606684 Free PMC article.
-
Connecting a connectome to behavior: an ensemble of neuroanatomical models of C. elegans klinotaxis.PLoS Comput Biol. 2013;9(2):e1002890. doi: 10.1371/journal.pcbi.1002890. Epub 2013 Feb 7. PLoS Comput Biol. 2013. PMID: 23408877 Free PMC article.
-
Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases.Neuron. 2009 Mar 26;61(6):865-79. doi: 10.1016/j.neuron.2009.02.013. Neuron. 2009. PMID: 19323996 Free PMC article.
-
Caenorhabditis elegans: a model system for systems neuroscience.Curr Opin Neurobiol. 2009 Dec;19(6):637-43. doi: 10.1016/j.conb.2009.09.009. Epub 2009 Nov 4. Curr Opin Neurobiol. 2009. PMID: 19896359 Free PMC article. Review.
-
An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior.Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):11002-7. doi: 10.1073/pnas.0805004105. Epub 2008 Jul 30. Proc Natl Acad Sci U S A. 2008. PMID: 18667708 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources