Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun 28;447(7148):1111-5.
doi: 10.1038/nature05860. Epub 2007 May 23.

Lateral habenula as a source of negative reward signals in dopamine neurons

Affiliations

Lateral habenula as a source of negative reward signals in dopamine neurons

Masayuki Matsumoto et al. Nature. .

Abstract

Midbrain dopamine neurons are key components of the brain's reward system, which is thought to guide reward-seeking behaviours. Although recent studies have shown how dopamine neurons respond to rewards and sensory stimuli predicting reward, it is unclear which parts of the brain provide dopamine neurons with signals necessary for these actions. Here we show that the primate lateral habenula, part of the structure called the epithalamus, is a major candidate for a source of negative reward-related signals in dopamine neurons. We recorded the activity of habenula neurons and dopamine neurons while rhesus monkeys were performing a visually guided saccade task with positionally biased reward outcomes. Many habenula neurons were excited by a no-reward-predicting target and inhibited by a reward-predicting target. In contrast, dopamine neurons were excited and inhibited by reward-predicting and no-reward-predicting targets, respectively. Each time the rewarded and unrewarded positions were reversed, both habenula and dopamine neurons reversed their responses as the bias in saccade latency reversed. In unrewarded trials, the excitation of habenula neurons started earlier than the inhibition of dopamine neurons. Furthermore, weak electrical stimulation of the lateral habenula elicited strong inhibitions in dopamine neurons. These results suggest that the inhibitory input from the lateral habenula plays an important role in determining the reward-related activity of dopamine neurons.

PubMed Disclaimer