Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Jun;47(6):1033-41.
doi: 10.1111/j.1537-2995.2007.01232.x.

Cryopreservation of cellular products in a closed-bag system with an incorporated dimethyl sulfoxide-resistant sterile filter outside of cleanroom facilities

Affiliations
Comparative Study

Cryopreservation of cellular products in a closed-bag system with an incorporated dimethyl sulfoxide-resistant sterile filter outside of cleanroom facilities

Andreas Humpe et al. Transfusion. 2007 Jun.

Abstract

Background: Manipulations, for example, cryopreservation, of cellular therapeutics carried out in an open system must be performed in a class A environment with surrounding class B environment. To avoid cleanroom facilities, a new closed-bag system with an incorporated dimethyl sulfoxide-resistant sterile filter for cryopreservation of cellular products was evaluated at two different centers.

Study design and methods: A total of 44 different products (22 buffy coats [BCs] and 22 leukapheresis [LK] products) were split and cryopreserved in parallel in cleanroom facilities (Method I) and with the closed system on the bench of a "normal" laboratory (Method II). Viability analyzed by 7-aminoactinomycin D staining and flow cytometric analysis and sterility of the products were analyzed.

Results: Independent of the cellular source (BC or LK), the median viability of CD45+ cells decreased significantly (p < 0.01) during cryopreservation: namely, in BCs, -15.8 percent with both methods, and in LK products, -5.4 percent with Method I and -4.8 percent with Method II, respectively. CD3+ as well as CD14+ cells exhibited a similar pattern and were also found significantly (p < 0.01) diminished after thawing independent of the handling system. For CD19+ cells, the small decrease of viability was only for the BC group significant (p = 0.027) when the cells had been processed with Method I. No bacterial contamination was detected neither in fresh products nor in products after cryopreservation.

Conclusion: The closed system for cryopreservation of cellular products appears to be equivalent to cleanroom-based methods regarding cellular integrity and sterility when appropriate quality of sterile filters is assured.

PubMed Disclaimer

LinkOut - more resources