Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Jul 6;101(1):50-8.
doi: 10.1161/CIRCRESAHA.106.145847. Epub 2007 May 24.

RhoGDI-1 modulation of the activity of monomeric RhoGTPase RhoA regulates endothelial barrier function in mouse lungs

Affiliations
Free article
Comparative Study

RhoGDI-1 modulation of the activity of monomeric RhoGTPase RhoA regulates endothelial barrier function in mouse lungs

Matvey Gorovoy et al. Circ Res. .
Free article

Abstract

Rho family GTPases have been implicated in the regulation of endothelial permeability via their actions on actin cytoskeletal organization and integrity of interendothelial junctions. In cell culture studies, activation of RhoA disrupts interendothelial junctions and increases endothelial permeability, whereas activation of Rac1 and Cdc42 enhances endothelial barrier function by promoting the formation of restrictive junctions. The primary regulators of Rho proteins, guanine nucleotide dissociation inhibitors (GDIs), form a complex with the GDP-bound form of the Rho family of monomeric G proteins, and thus may serve as a nodal point regulating the activation state of RhoGTPases. In the present study, we addressed the in vivo role of RhoGDI-1 in regulating pulmonary microvascular permeability using RhoGDI-1(-/-) mice. We observed that basal endothelial permeability in lungs of RhoGDI-1(-/-) mice was 2-fold greater than wild-type mice. This was the result of opening of interendothelial junctions in lung microvessels which are normally sealed. The activity of RhoA (but not of Rac1 or Cdc42) was significantly increased in RhoGDI-1(-/-) lungs as well as in cultured endothelial cells on downregulation of RhoGDI-1 with siRNA, consistent with RhoGDI-1-mediated modulation RhoA activity. Thus, RhoGDI-1 by repressing RhoA activity regulates lung microvessel endothelial barrier function in vivo. In this regard, therapies augmenting endothelial RhoGDI-1 function may be beneficial in reestablishing the endothelial barrier and lung fluid balance in lung inflammatory diseases such as acute respiratory distress syndrome.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

Substances

LinkOut - more resources